```
(NASA-CR-161293-VO1-2) EXTRATERFESTRIAL N79-33229
PRCCESSING AND MANOFACTORING OF LARGE SPACE
SYSTEMS, VOLUME 2, CHAPNERS T-14 AND
APPRNDICES Final Report (Hassachusetts Unclas
Inst. of Tech.j 482 p HC A21/MF n01 G3/12 35955
    NADA CUIVIKACIUN
                        REPORT
```

NASA CR-161293

EXTRATERRESTRIAL PROCESSING AND MANUFACTURING OF LARGE SPACE SYSTEMS, Volume II

By Space Systems Laboratory
Department of Aeronautics and Astronautics
Massachusetts Institute of Technol
Cambridge, Massachusetts 02139

September 1979

Final Report

Prepared for

NASA - George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812

TABLE OF CONTENTS

VOLUME 2: CHAPTERS 7-14,
ADDENDUMS \& APPENDIX
Section Page
CHAPTER 7: PRODUCTION EQUIPMENT SPECIFICATIONS
7.1 General Remarks 7.1
7.2 Metals Furnaces and Casters 7.12
7.3 Ribbon and Sheet Operations 7.37
7.4 Insulated Wire Production 7.65
7.5 DC-DC Converter Production 7.72
7.6 Klystron Production System 7.77
7.7 Waveguide Production Equipment 7.82
7.8 Solar Cell Factory 7.107
CHAPTER 8: SMF SUPPORT EQUIPMENT
8.1 General Remarks 8.1
8.2 Input/Output Station 8.4
8.3 Internal Transport System 8.6
8.3.1 Overview 8.6
8.3.2 Magnetic Transporter System 8.9
8.3.3 Internal Storage Device 8.16
8.4 Crawler System 8.19
8.5 Powerjiant Equipment 8.23
8.6 Prodection Control 8.26
8.6.i Control Structure 8.26
8.6.? Quality Control Concepts 8.29
8.6.3 Inventory 8.31
8.1 Habitation 8.33
8.8 Station-Keeping Equipment 8.38
8.9 SM5 Structure 8.38
CHAPTER 9: MAINTENANCE AND REPAIR
9.1 General Remarks 9.1
9.2 Repai: Options Tradeoffs 9.2
9.3 Repair Shop 9.4
9.4 Free-Flying Hybrid Teleoperator 9.5
CliAPTER 10: LINE ITEM COSTING

TABLE OF CONTENTS
(Continued)

Section

Page

CHAPTER 11: OPTIMUM BUILDUP SCENARIO

CHAPTER 12: TECHNOLOGY EVOLUTION PROGRAM
12.1 General Remarks 12.1
12.2 R\&D: Metals Furnaces and Casters 12.8
12.3 R\&D: Ribbon and Sheet Operations 12.11
12.4 R\&D: Insulated Wire Production 12.15
12.5 R\&D: DC-DC Converter Production 12.17
12.6 R\&D: Klystron Production 12.19
12.7 R\&D: Solar Cell Production 12.21
12.8 R\&D: Waveguide Production 12.29
12.9 R\&D: Support Equipment 12.33

CHAPTER 13: POSSIBLE SYSTEMS TRADEOFFS
13.1 Introduction 13.1
13.2 Optimization of Product for Use 13.1
of Lunar Materials
13.3 Effect of SPS Mass Increase
13.2
13.4 Tradeoffs in Lunar Refining 13.3
13.5 Transportation From the Moon 13.5
13.6 SMF Productior Control Tradeoffs 13.6
13.7 waste Reprocessing at the SMF 13.8
$\begin{array}{ll}13.8 & \text { SMF Buildup Sequence } \\ 13.9\end{array}$
13.9 Location of Facilities 13.10

CHAPTER 14: CONCLUSIONS AND RECOMMENDATIONS
14.1 Conclusions 14.1
14.2 Recommendations 14.2

REFERENCES

TABLE OF CONTENTS

(Continued)
Section Page
ADDENDUM I: OIRECT VAPORIZATION EXPERIMENTS
1.1 Introduction 1.1

1. 2 Apparatus 1.3
1.3 Experimental Procedure 1.8
1.4 Results 1.8
I. 5 Discussion of Results 1.11
I. 6 Conclusions and Recommendations 1.13
ADDENDUM II: AUTOMATION AT THE SMF
II. 1 Introduction11.1
II. 2 General Concepts or Automation 11.1
II. 3 Computer Control System Requirements 11.3
II. 4 Examples II. 14
11.5 References II. 25
ADPENDIX: COMPUTER PPROGRAM LISTING
A. 1 Program SMFCOST A2
A. 2 Program SPSLP A37
A. 3 Program SCFCOST A50

iHAPTER ;

PRODUCTION EQUIPMENT SPECIFICATIONS

7.1: GENERAL REMARKS

Figures 7.l, 7.2, and 7.3 show the cuerall layout of the reference SMF. The diagrams serve to illustrate the likely relative positions and dimensions of the different sections of the facility. Figures 7.1 and 7.2 are "top" and "side" views, respectively, of the SMF, drawn to the same scale. These figures illustrate the planar shape of the facility. Figure 7.3 is an "end" view of the facility, drawn to a larger scale to show some of the detail of the components and solar cell manufacturing areas.

Several features are omitted from the figures for clarity. Figures $7.1,7.2$, and 7.3 do not show the thermal waste radiators for the components factory, above and below that factory; the solar cell deposition radiators which collectively cever roughly half of the top and the entire bottom of the solar cell factory; the active radiators for the wayeguide factory, above and below that factory; the support structure holding the machinery together within the factories; and the internal transport tracks between all of the SMr sections. Part of one of the two habitat radiators is shown in Fig. 7.1, and the support truss for those radiators is partially seen in Figs. 7.2 and 7.3. When the various radiators for the SMF are included, they cover much of the top and bottom surfaces of the facility. Since most of these radiators are l-mm thick aluminum sheets, they protect the SMF equipment and personnel from micrometeorites.

FIGURE 7.2: "SIDE" VIEW OF REFERENCE SMF

FIGURE 7.3: "END" VIEW OF REFERENCE SMF

The solar array, partially shown in Figs. 7.1 and 7.2, is omitted from fig. 7.3. This array shades the rest of the facility from direct sunlight, reducing the thermal input to the SMF. The array produces baseload power for the entire SMF. The reference SMF design requires 240 MW for its operation, which, assuming a solar cell efficiency of 12.5%, equates to an array area of $1.4 \mathrm{~km}^{2}$. The solar celi array is the only section requiring close pointing to the $\operatorname{Sun}\left(\pm 1^{\circ}\right)$. The rest of the factory does not require close attitude control, but should stay in the shadow of the solar array to alleviate heat waste problems and thermal deformations.

The array is connected via a flexible joint (including flexible power cables) to a central mast extending down the length of the facility. The m?st serves three functions: 1) It acts as a structural mast to which the solar array and other sections of the factory are attached. (The factory sections are attached by joints which use active damping systems to prevent vibrations being transmitted through the facility.) 2) It carries the main busbars and power conditioning equipment for the SMF. 3) It is designed to allow transporters travelling between the solar cell factory and the rest of the facility to pass through it.

The SMF production machinery is conceptually divided into three areas: the components factory (which produces all components other than solar celis and waveguides), the soiar cell factory, and the waveguide factory. The components factory produces klystron assemblies, structural member ribbon, busbar 7.5
strips, $D C-D C$ converters, electrical wire and cables, $D C-D C$ converter radiators, end joints, and joint clusters. This factory is located adjacent to the input/output station (at the left of Fig. 7.1). Details of the factory layout are shown in Fig. 7.4, and the production equipment designs are described in Secs. 7.2 through 7.6 of this chapter. As shown in Fig. 7.3, the layout of this section is essentially planar, excepi for the wheel-iike internal storage devices. Omitted from the views of the components factory are the waste heat radiators located above and below it.

The waveguide factory is shown in Fig. 7.1, adjacent to the zone refining area. The factory is designed to allow the minimum of handing of the thin foamed glass sheets from which the maguides are formed. The details of the waveguide production processes are discussed in Sec. 7.7.

The single largest section in the reference $S M F$ is the solar cell factory (shown in Figs. 7.1, 7.2, and 7.3, and shown in a larger scal top view in fig. 7.5). The solar cell factory consists of two major structural units, one containing the zone refining and interconnect deposition sections, and the other the deposition and assembly equipment for the solar cell array production. Each of these structural units is attached to the central mast at several discrete points. The connections are flexible and include active damping systems to keep vibrations from propagating into the solar cell factory, which might damago the fragile solar cells. The connections between the central mast and the sections of the

FIGURE 7.4: LAYOUT OF COMPONENTS FACTORY
solar cell factory also carry electrical busbars and internal transport tracks. The transport tracks bring inputs to the factory, move scine of the intermediate products within the factory, and remove the output solar cell arrays.

Routine feeding and maintenance of the sryar cell deposition and assembly processes is done by 'crawlers' running along tracks above the planar factory. More complex repairs are performed by Free-flying Hibrid Teleoperators (FHT's): The crawler tracks are shown as horizontal ?ines in fig. 7.5. The crawlers take inputs from, and load outpurj : nio the SMF's internal transport carts. The prodection ines for deposition and assembly of the solar cells run perpendicu arly to the crawler tracks (and thus perpendicylarly to the ceniral mast). No radiators for the solar cell factory are shown, but those for the zone refining and interconnect deposition section are above and below that section; those for the electron beam guns in the deposition sections are above those s. ns; those for the thermal belts in the deposition sections are below the deposition and assemtly section, coveriny the underside of that section. The solar cell factor. cescribed in detail in Sec. 7.8 .

Also shown in Figs. 7.1, 7.2, and 7.3 are support areas such as the input/output station, habitat, and repair shops. These are described in detail in C i ap. 8.

This chapter inc?udes tabulated specifications, physical descriptions, and diagrams of each machine in the reference SMF design. Sections 7.2 through 7.8 discuss equipment,

FIGURE 7.5: LAYOUT OF SOLAR CELL FACTORY

```
grouped ty major SMF operations (subsections of components manu- facture, waveguide manufacture,solar cell manufacture). Each section begins with a genereal description of the production processes, followed by data on individual machines.
Associated with each machine are: a specification sheet (listing machine mass, physical dinensions, throughtput per machire, power requirements, and the contribution of each component to mass and power requirem \({ }^{-n t s}\) ), diagram(s), and a written description of the machine's operation.
Terms used in the specification sheer are defined as follows:
Mass of machine -- total mass of one machine.
Throughput per machine -- mass of components produced by each machine per year.
Power requirements -- power required to operate each machine.
Number of machines -- number of this type of machine in the reference SMF.
Number of operators -- number of crew required to operate the machine (during its duty cycle).
Components -- elements which compose the machine.
Number per machine -- number of this type of component per machine.
Mass -- mass of each component.
Power required -- power required for operation of each component.

The written description explains the function of each component, the oseration of the machine, and the rationale used in the sizing and costing processes.

\section*{7.2: METALS FURNACES AND CASTERS}
7.2.1 Overview: Figure 7.6 is a detailed top view of the components factory. The shaded areas highlight the machinery described in this section. Four furnaces -- one producing 6063 aluminum alloy, one producing molten aluminum, one producing SENDUST alloy, and one producing molten iron -- are used. The furnaces are fed with rods imported fror the lunar suriace, which are lieated as they enter. Mixing of the melt is accomplished by electro-magnetic induction. The resultant liquid metals are pumped by electromagnetic pumps along pipelines for further processing.

As shown in the figure, molten iron, molten aluminum, and 6063 aluminum alloy are delivered to die casters. These devices each consist of a central piston chamber which sequentially feeds molten metal through a set of valves to a series of molds. Active cooling systems are used to cool the castings, and the solidified workpieces are ejected from the molds. Parts produced in this manner are solenoid cores, klystron housings, manifold parts, end joints and joint clusters. The SENDUST alloy is fed to a specialized caster which is used to produce the transformer cores for \(D C-D C\) converters.

Molten aluminum and \(\epsilon . j 3\) alloy are also fed into a continuous caster, which produces 2 cm thick ribbon that is cut into slabs by a high power electron beam gun. The slabs are dispatched to the ribbon and sheet operations section, described in Sec. 7.3.


FIGURE 7.6: LAYOUT OF METALS, FURNACES AND CASTERS
7.2.2 Aluminum Alloying furnace: The aluminumalloying furnace is designed to take in rods of pure aluminum ( 6.4 cm diameter), melt them, and produce liquid metal at \(800^{\circ} \mathrm{C}\). Aluminum 6063 alloy may be produced by the addition of 1.7 cm diameter Mg rods and 1.3 cm diameter si rods.

The furnace body is made of slip-cast, nitride bonded sisilicon carbide, a refractory material resistant to corrosion by liquid metals. The \(A l, \mathrm{Mg}\), and Si rods are fed into the furnace through vapor sleeves, and pre-heated with copper induction coils. Induction heating continues as the rods are submerged into the melt. The mean residence time in the alloying chamber for 6063 alloy is 2 minutes. During this time, induction coils act to mix the liquid metal. The maximum production rate for one furnace is \(.6 \mathrm{~kg} / \mathrm{sec}\) or \(1.9 \times 10^{4}\) tons per year in continuous operation. At capacity, the furnace holds 1250 kg of liquid metal.

The induction coils used to heat and stir the metal in the furnace are 75\% efficient; 209 kw must be wasted through an active cooling system. The study group proposes a system which uses liquid sodium to draw heat from the coils and waste it through a radiator. Since the coil resistivity increases with temperature, a tradeoff exists between increased power generation (producing a high temperature) and increased radiator size (allowing radiation at a lower temperature). The radiator is presently designed for an operating temperature of about \(300^{\circ} \mathrm{C}\).


FIGURE 7.7: ALUMINUM ALLOYING FURNACE

Cost estimates for both the aluminum and iron alloying furnaces were developed from consultations with an industrial equipment costing specialist at Kennecott Copper Co. and a member of the research and development division of the Norton Co.

\section*{SPECIFICATION SHEET}

Machine Name: Aluminum Alloying Furnace
Function of Machine: To produce either molten Al or Al alloy Mass of Machine: 1215 kg

Physical Dimensions: 4.8 m length; 7 m maximum diameter
Throughput/Machine (tons/year): \(1.4 \times 10^{4}\)
Power Requirements (KW/machine): 1160
Number of Machines: 3
Number of Operators: 0
Components:
\begin{tabular}{|l|c|c|c|}
\hline Casing & 1 & 150 & 0 \\
\hline Coils & 1 & 60 & 1150 \\
\hline Radiator \& Pipes & 1 & 1000 & 10 \\
\hline Controller & 1 & 5 & .1 \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
7.2.3 Iron Alloying Furnace: The iron alloying furnace is designed to take in rods of pure iron ( 6.4 cm diameter) and to produce molten iron. With the addition of 2.5 cm diameter aluminum rods and 1.3 cm diameter silicon rods, SENDUST alloy can be produced.

The iron furnace is operated in the same fashion as the aluminum furnace. The body is made of graphite to provide corrosion resistance and the furnace capacity is 3100 kg moving at \(.56 \mathrm{~kg} / \mathrm{sec}\) or \(1.810^{4}\) tons/year. The metal leaves at \(1600^{\circ} \mathrm{C}\).

\section*{SPECIFICATION SHEET}

Machine Name: Iron Alloying Furnace
Function of Machine: To produce either molten Fe or SENDUST alloy
Mass of Machine: \(\quad 1215 \mathrm{~kg}\)
Physical Dimensions: 4.8 m length; 7 m maximum diameter
Throughput/Machine (tons/year): \(1.9 \times 10^{3}\)
Power Requirements (KW/machine): 1160
Number of Machines: 1
Number of Operators: 0
Components:
Components:
\begin{tabular}{|l|c|c|c|}
\hline Casing \\
Coils & 1 & 150 & 0 \\
\hline Radiator \& Pipes & 1 & 60 & 1150 \\
\hline Controller & 1 & 1000 & 10 \\
\hline & 1 & 5 & .1 \\
\hline & & & \\
\hline
\end{tabular}
7.17


FIGURE 7.8: IRON ALLOYING FURNACE
7.2.4 Liquid Aluminum Pipeline: A liquid aluminum pipeline is needed for the transport of molten Al and Al 6063 within the SMF. The pipe connects the Al furnaces to the metal casters. The pipes were designed for a maximum throughput of \(.6 \mathrm{~kg} / \mathrm{sec}\) or 19,000 tons \(/ \mathrm{yr}\) in continuous operation; normal throughput is 10,300 tons/yr.

The pipes are made of silicon carbide in a nitride matrix and are sized to survive handing stresses. Consultations with experts in industry resulted in the selection of a 6 mm pipe wall thickness. Six layers or foil insulation prevent cooling or solidification of the metal. The number of layers of foil was found by using the equation:
\[
Q=\varepsilon \sigma T_{0}^{4}\left[\frac{1}{2}(1-r)\right]^{n}
\]

Where \(\varepsilon\) is emissivity, \(\sigma\) is the Stephan-Boltzmann constant, \(n\) is the number of foil layers, \(r\) is the reflectivity, and Q is the power radiated away through the insulation. Because of the high temperatures involved the first two layers should be titanium and the other four layers should be aluminum.

Electromagnetic pumps (see Fig.7.9) provide the pressure necessary to force liquid metal through the pipe. These work by passing direct current through the liquid metal at right angles to a magnetic field. This produces a force on the fluid. The pumps will have metal contacts (tungsten alloy) extending into the fluid. The pumps may also be designed to provide heat if any cooling does occur. The size of the pump was determined
from current industrial pump sizes, and by calculation of the fluid flow rate and pressure needed. Costing for pumps was done by comparison with pumps used by the nuclear power industry. Cost estimates for the pipeline itself were also based on information about currently available materials. \(R\) \& \(D\) for the pipeline should include long term exposure of the materials to vacuum and corrosion resistance testing.


DC Magnet Coils

FIGURE 7.9: LIQUID ALUMINUM PIPELINE

\section*{SPECIFICATION SHEET}

Machine Name: Liquid Aluminum Pipeline
Function of Machine: To transport liquid Al within the SMF Mass of Machine: 115 kg

Physical Dimensions: \(30 \mathrm{~m} \times .2 \mathrm{~m} ; 6 \mathrm{~mm}\) wall thickness
Throughput/Machine (tons/year): \(1.03 \times 10^{4}\)
Power Requirements (KW/machine): . 01
Number of Machines: 4
Number of Operators: 0
Components:
\begin{tabular}{|l|c|c|c|}
\hline Pipe Sections & 13 & .3 & 0 \\
\hline Pipe Joint & 11 & .5 & 0 \\
\hline EM Pump & 7 & 10 & .01 \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
7.2.5 Liquid Iron Pipeline: The iron pipeline moves liquid iron or SENDUST alloy from the i,on furnace to the die caster. The iron pipeline is made of graphite to provide corrosion resistance. Like the aluminum pipeline, the maximum flow rate is \(.6 \mathrm{~kg} / \mathrm{sec}\); however the iron pipeline will only be required to carry 1900 tons/year in mormal operation.

For costing information and other Get.lls see Sec. 7.2.4, "Liquid Aluminum Pipeline".


\section*{SPECIFICATION SHEET}

Machine Name: Liquici Iron Pipeline
Function of Machine: To transport liquid Fe within tre SMF
Mass of Machine: 75 kg
Physical Dimensions: \(30 \mathrm{~m} \times .2 \mathrm{~m}\) (inci. foil insul.); 2 mm wall
Throughput.'Machine (tons/year): \(1 . ? \times 10^{3}\)
Power Requirements (KW/machine): 0
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Number of Machines: \\
Number of Operators: \\
Components:
\end{tabular} & 1
0 &  &  &  \\
\hline Pipe Segments & & 5 & . 10 & 0 \\
\hline Joints & & 3 & 1.5 & 0 \\
\hline EM Pump & & 2 & 10 & . 001 \\
\hline & & & & \\
\hline & & & & \\
\hline & & & & \\
\hline
\end{tabular}
7.2.6 Continuous Caster: The continuous caster is designed to produce aluminum slabs from liquid aluminum. Continuous casting is especially suitable for use in space because it can produce uniform slabs in the absence of troublesome convection currents induced by gravity. The caster consists of a mold and a heat removal systems which circuistes a quantity of liquid sodium coolant between the mold and a radiator.

The caster width is sized for structural member ribbon production: each slab has cross-section \(.70 \times .02\) meters. After rolling, the width increases to .735 meters, the width required for structural member ribbon. The \(2-\mathrm{cm}\) mold thickness is the result of trading off the ease of liquid metal injection and the ease of rolling the resultant slabs. The search for a material that is both highly conductive (for heat removal) and resistant to liquid Al corrosion resulted in the selection of graphite as a mold material.

The cooling system is designed to cool the metal from \(800^{\circ} \mathrm{C}\) at a rate of \(1 \mathrm{~kg} / \mathrm{sec}\) (or \(3.2 \times 10^{4}\) tons/year) operating at maximum capacity. Cooling fluid flows in sheets across the upper and lower surfaces of the mold. The temperature of the coolant must be high enough to allow effective heat radiation to space and low enough to prevent the formation of defects in the slabs (which requires a large thermal gradient in the mold). Liquid sodium, used on Earth for cooling at high temperatures, has the advantages of high heat capacity and established pumping and pining technology. Therefore the system is designed
to allow sodium to enter the cooling jacket at \(200^{\circ} \mathrm{C}\) and leave at \(400^{\circ} \mathrm{C}\). At a throughput of \(1 \mathrm{~kg} / \mathrm{sec}\) of metal, liquid sodium must flow at a rate of \(2.8 \mathrm{~kg} / \mathrm{sec}\), removing 725 kW of power. A radiator of 1 mm thick aluminum with an area of \(180 \mathrm{~m}^{2}\) radiates away heat from the sodium at an effective temperature of \(275^{\circ} \mathrm{C}\).

Cost estimation for the continuous caster was aided by consultation with experts on sodium cooling systems presentiy used in nuclear reactors. Such systems, the study group was told, have virtually a 100\% duty cycle.

\section*{SPECIFICATION SHEET}

Machine Name: Continuous Caster
Function of Machine: To produce slabs of Al or Al 6063 alloy Mass of Machine: 890 kg

Physical Dimensions: .8 m length; .7 m width; \(\sim .1 \mathrm{~m}\) thickness
Throughput/Machine (tons/year): \(3.65 \times 10^{4}\)
Power Requirements (KW/machine): 20
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Number of Machines: 2 \\
Number of Operators: 0 \\
Components:
\end{tabular} &  & \[
\begin{aligned}
& \infty \\
& \dot{x} \\
& \boldsymbol{x} \\
& \boldsymbol{n} \\
& \boldsymbol{x}
\end{aligned}
\] &  \\
\hline Mold & 1 & 100 & 0 \\
\hline Fluid Coolant & 1 & 100 & 0 \\
\hline Piping System & 1 & 150 & 0 \\
\hline Pump & 4 & 10 & 20 \\
\hline Radiator & 1 & 500 & 0 \\
\hline & & & \\
\hline
\end{tabular}
7.25

7.2.7 Aiuminum Slab Cutter: Aluminum emerging from the continuous caster is cut into slabs with cross-secticis . \(70 \mathrm{~m} x\) .02 m , and lengths varying according to the needs 0 later production processes. The cut is made by a heavs duty electron beam gun as shown in Fig. 7.12. The device cerates at a power level of 128 kg to cut the 2 cm thick cast aluminum at a rate of \(4.2 \mathrm{~cm} / \mathrm{sec}\). This assumes typical effiriencies of \(50 \%\) in the gun and \(50 \%\) in the sublimation of the metal.

In an electron beam gun, a tungsten filament is heated to incandenscence, causing electrons to boil off. The electrons are formed into a beam and accelerated by a potential of several hundred thousand volts through a cylindrical anode. The electrons are focused by an electromagnetic lens to a 0.1 - 1 mm spot on the slab where they release their kinetic energy, vaporizing the material in the cutting area. Deflection coils provide some lateral movement of the focal point, but the gun also moves along a track inclined at 50 to the direction of motion of the slab, therby making a perpendicular cut across the slab.

Varcum is the tast condition for EB cutting operations, since the electron beam is dispersed by collisions with any gas molecules. Vacuum requirements are the main reason why lasers are more commonly used for beam cutting on earth: electron beam guns, however, are more energy-efficient ard penetrate deeper.


FIGURE 7.12: ALUMINUM SLAB CUTTER

The only consumable item in an \(E B\) gun is the tungsten filament which must be replaced every 8 rours (in a cutting gun) because of contaminating vapor from the bombarded material. A refill magazine of 20 filaments and a spare cathode is mounted directly on the gun and automatically replaces a filament when one goes out.

Electron beam guns require a closed current loop to return the electrons to the cathode. Therefore, they can only be used on conductive materials, or the quick build-up of negative charge at the impact point will repel the electron beam, and the build-up of positive charge in the cathode will eliminate the potential difference accelerating the electrons. In slab cutting, eiectrons are returned to the gun via a metal brush'sweeping across the slab surface next to the cutting zone. Above loKW power input, an EB gun probably cannot be effectively cooled by a passive radiator. An active cooling system employing liquid sodium is therefore used. Assuming a difference of \(100^{\circ} \mathrm{K}\) between the input and output temperatures, \(.5 \mathrm{~kg} / \mathrm{sec}\) of liquid sodium must circulate through the gun.

Accelerating voltage, focusing current, beam current, lateral sweep speed, and gun-to-slab distance are all control parameters of a gun. By increasing the accelerating voltage or focusing current, the size of the focused spot can be decreased, causing deeper penetration. Increasing
the beam current or decreasing the sweep speed will also increase DV penetration. The distance between the slab and gun will also affect the intensity of the focused spot since the greater the traveling distance, the higher the spacecharge repulsion effect, which 'spreads out' the electron in the beam. Reference 7.1 discusses numerical control of an EB gun.

\section*{SPECIFICATION SHEET}

Machine Name: Aluminum Slab Cutter
Function of Machine: To cut Al slabs (outputs of continuous caster)
Mass of Machine: 96 kg
Physical Dimensions: \(2 \mathrm{~m} \times 1.5 \mathrm{~m} \times 2 \mathrm{~m}\)
Throughput/Machine (tons/year): -.-
Power Requirements (KW,machine): 130
Number of Machines: 2
Number of Operators: 0
Components:
\begin{tabular}{|l|c|c|c|}
\hline EB Gun & 1 & 50 & 128 \\
\hline Gun Tracking & 1 & 25 & 1 \\
\hline Active Cooling System & 1 & 21 & 1 \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
7.2.8 Al and Fe Die Casters: Casting on Earth is accomplished by lading liquid metal into a sleeve, then driving it into a metal mold with a piston at high pressure ( \(1.3 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}\) ).

To adapt this process for use in space, a valve is placed near the entrance to the sleeve (see fig. 7.13). In order to cast many pieces efficiently, the study group has designed a system in which several molds can be fed by one piston and one liquid metal pipeline. The charging of the molds is controlled by valves at one end of the piston sleeve. An active cooling system circulates fluid around each mold. Once the casting in a mold has solidified, the mold is opened, allowing the casting to be removed to a storage frame. Castings produced by the die caster include: solenoid poles, solenoid cores, klystron housings, manifold parts, end joints and joint clusters.

Cost estimates for the die caster were based on the assumption that an earth-based die caster could be reduced in mass by at least \(50 \%\) when redesigned for space use.

Two such die casters are used in the reference SMF; one for the production of aluminum and aluminum alloy components, the other for the casting of iron pole pieces for klystrons.

The aluminum die caster produces manifold parts, klystron housings, solenoid cores, end joints, and joint clusters. Of the 19 molds, 5 are devoted to the production of alloy end joints and joint clusters, which require approximately 70 hours of production time per year (assuming one molding every two


FIGURE 7.13: DIE CASTER
7.32
> minutes). The remaining 14 molds are used in the manufacture of aluminum products.

> The iron die caster is used to produce the soft iron solenoid pole pieces required for klystron production (448,000 per year). One mold is used in the production process.

\section*{SPECIFICATION SHEET}

\section*{Machine Name: Al Die Caster}

Function of Machine: To sast parts from liquid Al and Al alloy.
Mass of Machine: \(35,500 \mathrm{~kg}\)
Physical Dimensions: \(6 \mathrm{~m} \times 6 \mathrm{~m} \times 4 \mathrm{~m}\)
Throughput/Machine (tons/year): \(4.1 \times 10^{3}\)
Power Requirements (KW/machine): 290
Number of Machines: 1
Number of Operators: 25
Components:
\begin{tabular}{|l|c|c|c|}
\hline Piston and Chamber & 1 & 15000 & 75 \\
\hline Molds & 19 & 1000 & 5 \\
\hline Active Cooling System & 1 & 1000 & 69 \\
\hline Radiator & 1 & 500 & 0 \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}

\section*{SPECIFICATION SHEET}

Machine Name: Fe Die Caster
Function of Machine: To cast parts from iiquid Fe
Mass of Machine: 3150 kg
Physical Dimensions: \(4 \mathrm{~m} \times 3 \mathrm{~m} \times 4 \mathrm{~m}\)
Throughput/Machine (tons/year): 800
Power Requirements (KW/machine): 23
Number of Machines: 1
Number of Operators: 25
Components:
\begin{tabular}{|l|c|c|c|}
\hline Piston and Chamber & 1 & 2000 & 10 \\
\hline Molds & 1 & 1000 & 5 \\
\hline Active Cooling System & 1 & 100 & 8 \\
\hline Radiator & 1 & 50 & 0 \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
7.2.9 Transformer Core Caster: Because the transformer cores are much larger than the other die cast parts, a separate facility has been designed for their production. This facility will be operated in the same fashion as the die caster.

The mold must measure \(1 \times 2 \times 3\) meters. After cooling, an operator removes the casting from the mold and delivers it to a storage area.

Mass estimates for this device are based on a scaling up of the die caster (see Sec. 7.2.8).


FIGURE 7.14: TRANSFORMER CORE CASTER

\section*{SPECIFICATION SHEET}

Machine Name: Transformer Core Caster
Function of Machine: To cast transformer cores
Mass of Machine: \(11,500 \mathrm{~kg}\)
Physical Dimensions: \(1 m \times 2 \mathrm{~m} \times 10 \mathrm{~m}\)
Throughput/Machine (tons/year): \(1.1 \times 10^{3}\)
Power Requirements (KW/machine): 110
Number of Machines:
Number of Operators: . 04
Components:
.
.04
\begin{tabular}{|l|l|l|l|l|}
\hline Caster & & 1 & 10000 & 50 \\
\hline Active Cooling System & - & 1 & 1000 & 60 \\
\hline Radiator & 1 & 500 & 0 \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}

\section*{7.3: RICBON AND SHEET OPERATIONS}
7.3.1 Overview: Figure 7.15 shows a top view of the ribbon and sheqt operations section of the components factory.

Siabs of 6063 Al alloy and pure aluminum are received at the rolling mills from the continuous casters (described in Sec. 7.2).

The alloy is rolled to a thickness of 1.77 mm and dispatched as a .74 m wide ribbon to the end trimming and welding area. Here ends of the ribbun are trimmed square by electron beam cutters. The successive ribbons E e welded together to form long ribbons, and the long ribbons are wound onto rollers. During winding, teflon sheets are placed between successive lajors of aluminum in order to prevent vaculim welding of the ribbon surfaces. The rolls of 6063 alloy are dispatched to the output area to be used as structural member :ibion.

The pure aluminum is rolled to a thickness of 1 mm anc dispatched to one of three areas; end trimminc and welding (to be dispatched as busbar stripsi, sheet trimming 'to be cut square by electron beam cutters and used in the formation of radiator sheets), or to the ribbon slicer (to be cut into strips for the manufacture of heat pipes).

Ribbon from the ribbon slicer is then either: \(t_{1} i m f_{i} d\) in the ribbon trimmer and used as heat pipe riboon in radiator assemblies; striated, form rolled and trimmed, and used as heat pipe segments in radiator assemblies; formed rolled and trimmed (without striation) for use as radiator pipe segments


FIGURE 7.15: LAYOUT OF METALS, FURNACES AND CASTERS
in DC-DC converter radiator assembly; or spooled and used as electrical wiring.

Sheets from the sheet trimmer are laid out and eleciron beam welded together to form radiator sheets for the klystron and \(D C-D C\) converter assemblies. because of the size of the DC-DC converter radiators, they cannot be transported through the factory and are therefore assembled close to the dispatch area to minimize the handling required.

The outputs of this section are then: structural member ribbon, busbar strips, klystron radiators, alur.inum wire, and DC-DC converter radiators. The machines used are described below.
7.3.2 Rolling \(\because \quad\) ril: To produce sheet for use in structural members and ot :er products, it is desirable to cold-roll the stock to give the sheet greater strength. Unfortunately, an attempt to cold-roll aluminum stock to greater than 120\% of its original length will produce unwanted cracks in the product. The SMF rolling mill is therefore designed to hot-roll aluminum at all stages but the final one. To facilitate hotrolling, the mill receives slabs directly from the caster, at \(500^{\circ} \mathrm{C}\). In the event of a production stoppage at the caster, heating elements at the entry to the rolling mill are put into operation. These consist of electrodes which pass large currents through slabs arriving from storage (see ifg. 7.16).

Once in the mill, slabs first pass through "roughing rollers" which have vertical as well as horizonial rolls designed to maintain the shape of the sheet. Horizontal rolls are 45 cm in diameter; vertical rolls are 20 cm in diameter. Finishing rollers then produce sheets that are close to the desired size. Finally, the sheets may be passed through an active cooling device and cold-rolled at \(150^{\circ} \mathrm{C}\) in the final stage.

The various stages of this rolling mili can be set to different roller spacings, thus producing sheet anywhere from 1 mm to 2.0 mm thick. In addition, the cold-rolling steps can be omitted if structural strength is not required in the product (in this case the product travels through the cooling jacket and final rolls unchanged).


FIGURE 7.16: ROLLING MILL

\section*{SPECIFICATION SHEET}

Hachine Name: Rolling Mill
Function of Machine: Production of sheets from slabs
Mass of Machine: \(187,000 \mathrm{~kg}\)
Physical Dimensions: \(17 \mathrm{~m} \times 2 \mathrm{~m} \times 5 \mathrm{~m}\)
Throughput/Machine (tons/year): \(3.65 \times 10^{4}\)
Power Requirements (KH/machine): 410
Number of Machines: 1
Number of Operators: 0
Components:
\begin{tabular}{|l|c|c|c|}
\hline Preheat System & 1 & .100 & 10 \\
\hline Roughing Stand & 1 & 105000 & 225 \\
\hline Cooling System & 1 & 10000 & 5 \\
\hline Finishing Stand & 1 & 70000 & 150 \\
\hline Radiater & 1 & 100 & 10 \\
\hline Handling \& Control System & 1 & 2000 & 10 \\
\hline
\end{tabular}

\begin{abstract}
7.3.3 End Trimming, Helding, and Roll Winding: These operations are show in Fig. 7.17. Aluminum ribbon (l mm thick) or 6063 Al alloy ribbon ( 1.77 mm thick) are fed from the rolling mill through the end trimmer. The trimmer consists of an electron beam gun which cuts the ends of the ribbon "square" (perpendicular to the ribbon edges). Subsequent ribbons of the same material and gauge are then EB welded end to end. The ribbons produced are wound onto spools with teflon sheets between successive layers of aluminum to prevent vacuum welding. The strips produced by welding are 660 m long in the case of the 1 mm gauge aluminum destined for use as busbars, and of a length suitable for use in a beam builder in the case of the 6063 Al alloy structural member ribbon ( 1.77 mm thick).

The teflon used in the rolls is returned to the SMF from the SPS assembly site every three months. Howeyer, the quantity of structural member strips produced necessitates an initial stock of 3000 rolls.
\end{abstract}


FIGURE 7.17: END TRIM, WELD, AND ROLL KINDER

\section*{SPECIFICATION SHEET}

Machine Hame: End Trimming \& Welding \& Roll Winding
Function of Machine: Creation of structural members and busbars from sheet
Mass of Machine: \(840,000 \mathrm{~kg}\)
Physical Dimensions: \(1 \mathrm{~m} \times 1 \mathrm{~m} \times 2 \mathrm{~m}\)
Throughput/Machine (tons/year): 12,700
Power Requirements (KW/machine): 70
\begin{tabular}{l} 
Number of Machines: 2 \\
Number of Operators: 0 \\
Components: \\
\hline EB Trimmer \\
\hline Focusing Device \\
\hline EB Welder \\
\hline Roll Winder \\
\hline Teflon Rolls \\
\hline Handling Equipment \\
\hline Active Cooling System \\
\hline
\end{tabular}
7.3.4 Sheet Trimmer: Ribbons to be used in the assembly of radiator sheets (see Secs. 7.39 and 7.3.10) are trimaed to be precisely rectangular ( \(2.15 \times .72 \mathrm{~m}\) ) by an actively cooled electron beam sheet trimmer. The need for peecision arises because the sheet pieces are later welded together edge-toedge.

The ribbon, guided by rollers, first passes through two edge-trimming EB guns which reduce the strip width to 72 cm . The ribbon is then trimmed into 2.15 m long segments by another EB gun. This second gun cuts through the 1 mm sheet sufficiently rapidly to use electronic rather than a mechanical tracking mechanism.


FIGURE 7.18: SHEET TRIM'IER

\section*{SPECIFICATION SHEET}

Machine Name: Sheet Trimmer
Function of Machine: Production of sheets for use in klystron radiators
Mass of Machine: 84 kg
Physical Dimensions: \(\quad 2 \mathrm{~m} . \times 1 \mathrm{~m} \times 1 \mathrm{~m}\)
Throughput/Machine (tons/year): \(2.4 \times 10^{3}\)
Power Requirements (KW/machine): 41.5
Number of Machines: 1
Number of Operators: 0
Components:
\begin{tabular}{|l|c|c|c|}
\hline EB Cutters & 3 & 6 & 10 \\
\hline Focusing Device & 3 & 2 & 3 \\
\hline Handling Equipment & 1 & 30 & 1 \\
\hline Active Cooling System & 1 & 30 & 1.5 \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
7.3.5 Ribbon Slicer: The ribbon slicing operation slices narrow strips of 1 mm gauge aluminum for use as electrical wires, and wider strips for heat pipe and rad ator manufacture.

The metal is sliced by being passed through a pair of rollers in a knife-and-siot configuration, which produces wires of varying width (and of square or rectangular crosssection). In order to prevent the cold welding of the aluminum as it is wound, the wire is wound onto spools which allow no contact between successive layers. The square cross-section of the wire produced allows a greater coil density to be achieved on winding.

The strips for heat pipe and radiator manufacture produced by the slicing rollers are then sent to the edge-trim and welding section described in Sec. 7.3.3.


FIGURE 7.19: RIBBON SLICER

\section*{SPECIFICATION SHEET}

Machine Name: Ribbon Slicer
Function of Machine: Production of wire and of strips for use in heat pipes and radiators
Mass of Machine: \(70,000 \mathrm{~kg}\)
Physical Dimensions: \(1 \mathrm{~m} \times 1 \mathrm{~m} \times 1 \mathrm{~m}\)
Throughput/Machine (tons/year): \(\quad 6.0 \times 10^{3}\)
Power Requirements (KW/machine): 231
Number of Machines:
Numter of Operators: 0
Components:
\begin{tabular}{|l|c|r|r|}
\hline Rolling Stand & 1 & 70000 & 225 \\
\hline Handling Equipment & 1 & 30 & \(?\) \\
\hline Spool Winder & 1 & 50 & 5 \\
\hline Spools & 100 & 2 & 0 \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
7.3.6 Ribbon Trimmer: The ribbon trimmer is designed to square the enas of the heat pipe riobor ifed from the ribbon slicer and used in klystron heat pipe mar:!facture). A 'clean' edge cut is required since a sealed edge joint must be formed between the radiator sheet and the ribbon.

A passively cooled electron beam gun is used \(t\), cut the ribbon as shawn in Fig. 7.20. The ribbon to be trimmed is transported along rollers which position the ribbon so that the 'cut' is made perpendicilarly to both edges. The cut ribbons are 1.6 m long, .125 m wide, and 1 mm thick. The power level of the gun is sufficiently high to cut rap' 'ly Enough so that a mechnical tracking system is not rec̣itred.


FIGURE 7. 20: RIBBON TRIMMER

\section*{SPECIFICATION SHEET}

Machine Name: Ribbon Trimmer
Function of Machine: To cut ribbon into segments sized for klystron radiator production
Mass of Machine: 30 kg
Physical Dimensions:1 mx \(1 \mathrm{~m} \times 1 \mathrm{~m}\)
Throughput/Machine (tons/year): \(7.3 \times 10^{2}\)
Power Requirements (KW/machine): 4.1
Number of Machines: 1
Number of Operators: 0
Componencs:
\begin{tabular}{|l|l|l|l|}
\hline EB Cutters & 1 & 8 & 3 \\
\hline Focusing Device & 1 & 2 & 1 \\
\hline Handling Equipment & 1 & 20 & .1 \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
7.3.7 Striator: The striator forms the striations which will become the capillary return paths in the heat pipes for the kiystron cooling system. One-millimeter gauge aluminum is passed through the striator as shown in Fig. 7.21. The upper roller is configured to produce striations along the center section of the incoming ribion, in preparation for form rolling this ribbon into heat pipe segments (discussed in Sec. 7.3.8).

The machine operates as rolling mill and is conventionally used on Earth in similar operations. One end of the ribbon is left unstriated, in order to provide a flat closed end for the pipes (see Fig. 7.24).


FIGURE 7.21: STRIATOR
7.53

\section*{SPECIFICATIOR SHEET}

Machine Name: Striator
Function of Machine: Striation of heat pipe strips
Mass of Machine: \(20,000 \mathrm{~kg}\)
Physical Dimensions: \(1 \mathrm{~m} \times 1 \mathrm{~m} \times 1\) m
Throughput/Machine (tons/year): \(3.2 \times 10^{3}\)
Power Requirements (KW/machine): 50
Number of Machines: \(\quad 1\)
Number of Operators: 0
Components:


\begin{abstract}
7.3.8 Form Roller: The form roller is used to shape both plain ribbon and striated ribbon into 'hat shaped' heat pipe and radiator pipe cross sections (as shown in Fig. 7.22). However, one tip of the striated segments is lest unrolled (the unstriated tip) to provics a flat 'closed' end for the pipes. Plain strips are form rolled alons their whole length, to form radiator pipe segments for the \(D C-D C\) converter radiators (see Sec. 7.3.10). The form roller assembly also l:cludes an electron beam gun, which is used to trim the pipe segments after rolling.
\end{abstract}


Form Rolling


FIGURE 7.22: FORM ROLLER

\section*{SPECIFICATIOM SHEET}

Machine Name: Form Roller
Function of Hachine: Rolling of heat pipe strips into hatshaped cross section Hass of Machine: 3000 kg

Physical Dimensions: \(1 \mathrm{~m} \times 1 \mathrm{~m} \times 2 \mathrm{~m}\)
Throughput/Machine (tons/year): \(3.3 \times 10^{3}\)
Power Requirements (KH/machine): 35
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Number of Machines: \\
Number of Operators: \\
Components:
\end{tabular} & 1
0 &  & 6
8
0
0
0
0 &  \\
\hline EB Cutter & & 1 & 7 & 3 \\
\hline Focusing Device & & 1 & 2 & 1 \\
\hline Form Roller & & 1 & 3000 & 30 \\
\hline Handling Equipment & & 1 & 30 & 1 \\
\hline & & & & \\
\hline & & & & \\
\hline
\end{tabular}
7.3.9 Klystron Radiator Assembly: Figure 7.23 shows the production of klystron radiators. Sheet output from the rolling mills (. \(72 \times 2.15 \mathrm{~m}, 1 \mathrm{~mm}\) thick aluminum sheets) are stored in magazines (separated to avoid vacuum welding). Two sheets are simultaneous?y fed from the magazines and along guide tracks to an \(E B\) welding station. Here, the two sheets are joined at their inner edges to form a plate \(1.44 \times 2.15 \mathrm{~m}\) (the klystron radiator sheet). The radiator is completed by welding into position six heat pipes, stored in magazines alongside the tracks.

Figure 7.24 shows the three principal steps in the attachment of heat pipes to the klysiron radiator sheets. The top figure shows an overview of the radiator sheet immediately after it has been welded together. Six heat pipe segments (only one is shown) are moved from the heat pipe segment magazines across the radiator sheets until their form-rolled 'open' ends extend beyond the sheet, and their flat 'closed' ends sit on the sheet. \(E B\) welders then weld the segment edges to the sheet.

Next, the open ends of the heat pipe segments are bent over (middle figure). This brings the end of the pipes to the expected location of the klystron (relative to the radiator sheet). Six heat pipe ribbons are then fed from their magazines, and their ends are welded to the radiator-sheet/heat-pipe-segment edge. The ribbons are then bent to fit against



FIGURE 7.24: KLYSTRON RADIATOR ASSEMBLY SEQUENCE
the heat pipe segments, and welded to complete the heat pipes (bottom figure).

The purpose of this assembly sequence is to form heat pipes with one continuous piece along their entire length -- the heat pipe segment. This allows the use of striations along the segment as capillary return paths for the heat pipe fluid, avoiding the need to insert a return wick in the pipe. The study group could not devise a simple, reliable method to connect striations across pipe joints, and so developed this continuous piece design.

Should the heat pipes be replaced by fluid pipes (as in a recent Boeing SPS design iteration), a similar process can produce fluid pipes open at both ends, or a pipe and manifold design can be substituted (such as for the DC-DC converter radiators, see Fig. 7.25).

Klystron-radiator-size sheets are also produced without attachment of heat pipes, and sent to magazines feeding the DC-DC converter radiator assembly (see fig. \(\quad .25\) ).

\section*{SPECIFICATION SHEET}

Machine Name: Klystron Radiator Assembly
Function of Machine: Automated assembly of klystron radiators
Mass of Machine: 636 kg
Physical Dimensions: \(15 \mathrm{~m} \times 10 \mathrm{~m} \times 3 \mathrm{~m}\)
Throughput/Machine (tons/year): --
Power Requirements (KW/machine): 93
Number of Machines: 7
Number of Operators: 0
Components:
\(\qquad\)
\begin{tabular}{|c|c|c|c|}
\hline EB Gun & 49 & 3 & 1 \\
\hline Focusing Device & 49 & 1 & . 5 \\
\hline  & 2 & 10 & . 5 \\
\hline Sheet Track \& Transport & 6 & 10 & . 5 \\
\hline Pipe Segment Magazine \& Transport & 6 & 10 & . 5 \\
\hline Pipe Ribbon Magazine \& Transport & 6 & 5 & . 5 \\
\hline Pipe Segment Bender & 6 & 30 & 1 \\
\hline Pipe Ribbon Bender & 6 & 15 & . 5 \\
\hline
\end{tabular}
7.3.10 DC-DC Converter Radiator Assembly: Figure 7.25 shows the \(D C-D C\) converter radiator assembly system. Sheets of 1 mm thick aluminum (from the sheet layout station) are stored in a sheet magazine. Seven of these sheets are joined to form a strip \(10.08 \times 2.15 \mathrm{~m}\). Seventeen such strips are joined edge-to-edge to form the \(D C-D C\) converter radiator sheet. Although ommitted from the figure for clarity, a number of rollers help the edge clamps to align the edges of the sheets before welding. Also, the EB welders first tack-weld the edges in several places, to avoid separation of the pieces due to thermal effects during the line-welding.

As the radiator sheet grows, manifolds and radiator pipes are welded onto the surface. The function of the manifold (a cast piece) is to spread the hot coolant fluid from on main feed pipe to nine pipes running along the back of the radiator sheet. A similar manifold at the other end of the radiator gathers the cooled fluid from the nine pipes and channels it into one output pipe.

The nine radiator pipes are each made from 10 radiator pipe segments ( 3.45 m long) with the cross-section shown in Fig. 7.22 but without striations. The pipe segments are positioned on the sheet from nine overhead magazines, and each segment is EB welded into position.

The finished radiator masses 1421 kg , and is too large to travel in the SMF internal transport system. Therefore this assembly station is located near the docking area, and 7.62

the long manipulators used for docking and cargo loading and unloading move the finished radiators into the output shipping containers.

\section*{SPECIFICATION SHEE:}

Machine Name: \(\quad D C-D C\) Converter Radiator Assembly
Function of Aachine: Automated assembly of DC-DC converter radiators
Mass of Machine: 585 kg
Physical Dimensions: \(45 \mathrm{~m} \times 15 \mathrm{~m} \times 3 \mathrm{~m}\)
Throughput/Machine (tons/year): ---
Power Requirements (KW/machine): 50
Number of Machines: 1
Number of Operators: 0
Components:
\begin{tabular}{|l|r|c|c|}
\hline EB Welder & 20 & .3 & 1 \\
\hline Focusing Device & 20 & 1 & .5 \\
\hline Sheet Magazine & 1 & 15 & 1 \\
\hline Track \& Transport & 1 & 30 & 5 \\
\hline Pipe Segment Magazine & 9 & 10 & .5 \\
\hline Manifold Assembler & 10 & 10 & 1 \\
\hline
\end{tabular}

\section*{7.4: INSULATED WIRE PRODUCTION}
7.4.1 Overview: Figure 7.26 shows the insulated wire production section of the componerts factory. Insulating fibers
 die. The strands are then wound onto spools which are in turn loaded onto the winding machinery. Aluminum wire -- produced as described in Sec. 7.2 -- is wrapped with the glass fibers by eight 'weaving' machines. The wire produced is dispatched for use either as \(D C-D C\) converter transformer co. 5 s or as klystron solenoid coils.


EIGURE 7.26: INSJLATED WIRE PRODUCTION LAYOUT
7.4.2 Glass Fiber Producer: The glass fiber producer draws fibers from a melt to produce insulation. The lunar input is in the form of a glass rod 6.4 cm in diameter and 8 m in length. The glass, known as \(S\)-glass, is composed of \(65 \% \mathrm{SiO}_{2}\), 25\% \(\mathrm{Al}_{2} \mathrm{O}_{3}\) and \(10 \% \mathrm{MgO}\), all of which are available on the moon. The fibers produced are 20 microns in diameter.

The fiber producer consists of a platinum-iridium-osmium alloy tube ( 2 cm thick) with a \(20-h o l e\) die at the end (see Fig. 7.27). The tube uses resistance heating coils to heat the glass to about 1700 K . A compressed gas piston is used to drive a plunger into the tube. The fiber nroducer was sized for output of fibers at \(00 \mathrm{~m} / \mathrm{sec}\). The piston and compressor masses were based on those of currently available machinery.

The fibers produced are wound onto spools and transported to the insulator winding facility.


\section*{SPECIFICATION SHEET}

Machine Name: Glass Fiber Producer
Function of Machine: To produce glass fibers
Mass of Machine: \(\quad 400 \mathrm{~kg}\)
Physical Dimensions: \(\quad 20 \mathrm{~m} \times 1 \mathrm{~m} \times 1 \mathrm{~m}\)
Throughput/Machine (tons/year): 25
Power Requirements (KW/machine): 9.0
Number of Machines: ol
Number of Operators: 0
Components:
\begin{tabular}{l|c|c|c|}
\hline Platinum Alloy Tube & 1 & 40 & 8.2 \\
\hline Piston \& Piston Tube & - & 1 & 100 \\
\hline Gas Pump & 1 & 30 & .5 \\
\hline Gas Cylinder & 4 & 45 & 0 \\
\hline Spool & 6 & .5 & 0 \\
\hline Spool Motor & 1 & 10 & .1 \\
\hline Automatic Spool Threader & 4 & 10 & .05 \\
\hline
\end{tabular}
7.4.3 Insulation Winder: The wire insulation wrapper draws aluminum wire from a spool and glass fibers from other spools.

It then wraps the wire with fibers in a pattern similar to that of the outer wire of coaxial cable. The insulated wire is then spun onto an output spool and stored.

The cost estimates were based on prices of industrial weavers used for making cloth. The process for making tubular weave is widely used and most machines that weave cloth can weave glass fibers.


FIGURE 7.28: INSULATION WINDER

\section*{SPECIFICATIOM SHEET}

Machine Name: Insulation Winder
Function of Machine: To wrap insulation on wires
Mass of Machine: 500 kg
Physical Dimensions: \(1.5 \mathrm{~m} \times 1.5 \mathrm{~m} \times 1 \mathrm{~m}\)
Throughput/Machine (tons/year): 430
Power Requirements (Kw/machine): 2
Mumber of Machines: 8
Number of Operators: 0
Components:


\section*{7.5: DC-DC CONYERTER PRODUCTION}
7.5.1 Overview: The DC-DC converter production area is indicated in Fig. 7.29. The converter consists of a SENDUST alloy transformer core (see Sec. 7.2), insulated wire windings (see Sec. 7.4), a radiator (see Sec 7.3), and control circuitry tmported from Eartil.

In this area, the transformer cores are received from the caster, and cooling chanrels are drilled through it to allow thermal control of the converter. The insulated wire is next wound onto the limbs of the transformer, and finally, the control circuitry ts added. The fitting of the control circuitry is assumed not to be automated because of the combination of the task's complexity and the low output level.

The transformer/circuitry combination, and the DC-DC converter radiator are shipped separately to the SPS construction site because of problems in handing the fully assembled converter.

7.5.2 DC-DC Converter Producer: A numerically controlled "deep" drill (3 m long bit) is used to drill cooling channels through the transformer core. In order to provide one continuous channel, three interconnecting holes must be drilled (as shown in rig. 7.30 [a]). The drill features a debris removal system, i.e. liquid injected through the center of the bit is used to carry away metal particles and prevent 'clogging' of the holes. Such machines are in current use in industry.

After drilling, the transformer core is transferred to the coil winding machine. This machine -- again of a type currently used in industry -- uses manipulator arms to wind insulated wire from a spool around the transformer limbs. (See Fig. 7.30 [b]). Finally, the transformer, complete with windings, is connected manually to the control circuity imported from Earth.


\footnotetext{
FIGURE 7.30: DC-DC CONVERTER PRODUCTION
}

\section*{SPECIFICATION SHEET}

Machine Name: DC-DC Converter Producer
Function of Machine: Manufacture and Assembly of DC-nC converters
Mass of Machine: 4000 kg
Physical Dimensions: \(8 \mathrm{~m} \times 15 \mathrm{~m} \times 6 \mathrm{~m}\)
Throughput/Machine (tons/year): \(2.1 \times 10^{3}\).
Power Requirements (KW/machine): 2.5
Number of Machines: 1
Number of Operators: . 2
Components:
\begin{tabular}{|l|l|l|l|}
\hline Coolant Channel Deep Drili & 1 & 2000 & 2 \\
\hline Winding Machine & 1 & 2000 & .5 \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}

\section*{7.6: KLYSTRON PRODUCTION SYSTEM}

The klystron production section is required to be a highly automated facility with a high output rate of complex components. The essential tasks which it must perform are:
- Machining and polishing of cast solenoid core
- Drilling of cooling channels
- Machining of output cavity/waveguide interface
- Winding of solenoid coil
- Fitting of solenoid pole pieces
- Quality control
- Fitting of radiator assembi..
- Assenbly of gun/collector/hous.ngs/control circuitry
- Bakeout and processirg
- Testing
- Other design dependent operations

It is anticipated that the aluminum cast solenoid core arriving at the klystron facility from the casting section will be sized to within \(0.8 \%\) of its nominal design dimensions. The klystron cavities, therefore, must be further machined and polished to come witain the tulerance limits of \(1.5 \times 10^{-4} \mathrm{~mm}\) to \(2.0 \times 10^{-4} \mathrm{~mm}\) RMS for 2.45 GHz operation. At this stage, provision for cooling channels, drilled transversely in the webs between cavities, should be made. In order to prevent contamination of the core production area by chips (from the machiring operations), active dust removal systems should be in operation througho t the plant. Completed core units are subjected to automatic testing of dimensions and surface finish
before being transported to the next stage - any sub-standard units being discarded before fitting of components brought from Earth. Further machining of the cavity, in preparation for fitting of the window after bakeout, is completed before installation of the magnetic circuit.

The magnetic circuit consists of two solenoids (one focusing and one re-focusing solenoid) and two soft-iron pole pieces (to connect the solenoid core and focusing solenoid). The solenoids are wound aluminum wire with a glass wool insulator coating, and the pole pieces are soft-iron annuli, electron beam welded into position at either end of the focusing solenoid to compl zte a magetic circuit around the cavities.

The klystron radiators, manufactured elsewhere in the SMF, are at this point connected to the cooling channels. Components originating from Earth, i.e. collector, electron gun, and control systems, are mounted on the tube together with cast aluminum collector and solenoid housings (produced in the SMF). The now compieted tube is dispatched to the testing area for bakeout (if necessary) and processing. A final "hot" (cathode on) test of the tube is made before dispatch to stores or to the SPS assembly site. The wastage rate of tubes at the present time is approximately \(7 \%\) during manufacture -- the study group feels tiat similar rates (l0\%) should be achievable using more highly automated manufacturing techniques in the \(S M F\). Although particular processing stages cannot be listed 7.78
at the present time, equipment used is experted to include; milling machines, polishers, drills, EB welders, test stationi, winding machines and robot manipulators. Since no specific design of the baseline product has been completed, costirg of the klystron plant overall (rather than of individual machir. s) has been conducted. This approach does not involve any attempt to list individual operations and therefore avoids errors arising from the ommission of unforeseen production steps.

The klystron production facility was sized on the basis of a requirement for 204,000 klystrois/year (including a \(10 \%\) margin for breakage \(d \sim \sim S S\) assembly) plus an additional \(10 \%\) to account for \(t \quad \because e \dot{c}\) :poilage (giving a total of 224,400 klystrois/ycar; was assumed that the residenc time of a workpie.s i, cre machinsry was two hours, and therefore that the resident worspiece mass in the machinery would be two hours worth of production or 3053 kg ) at a given time. Since no other information on the specific machinery mass was available, the production machinery mass was estimated to be 100 times the residert mass (i.e. approximately 305 tons). The replacement parts are assumed to account for \(5 \%\) of the machine mass per year -- gi:ing a figure of aodroximately 15 tons/year. With an \(80 \%\) duty cycle, each stron piduction unit within the facility has a working time of 6400 hours/year. Therefore, at 2 hours per klystron it has the capacity to produce 3200 units/year. However, sinie the final testing is expected to occupy one hour of production time, 2 workpieces 7.79
may occupy a machine at a given time (one unit being assembled, the other being tested). Therefore, the number of units required is \(224,400 /(3600 \times 2)=32\). Assuming that each unit occupies a 'floor area' of \(40 \mathrm{~m}^{2}\) and a height of 5 m , then the area required f.n klystron production is \(1280 \mathrm{~m}^{2}\). This analysis assumes that a production init can handle only one workpiece in the production stage and one in the testing stage at a given time. Depending on the klystron design it may be possible to have a higher number of testing units than production units arid to have simultaneous production of several workpieces in one máhine, thus reducing the facility size.
* 311 power requirements, procurement costs and dut.. cycles were based on an earth-based facility designed by Varian Associates (Ref. 7.2). Repair ?abor was estimated on the b-: is of two crew men per machine section, and crew requirements calculated or the basis that the entire pl would be automatically controlied.

Finally, R\&D costs were estimated on the basis of the requirement to develop highly actomated close-tolerance machining facilities and to build and test a pilot facility (possibly irvolving some testing in space).

In the specifications sheet following, the entire facility is listed as one machine, rather than 32 prodaction units. The factorv thus agglomerates production stards and common handiing and testing equipment.

\section*{SPECIFICAIICN SHEET}

Machine Name: Klystron Production System
Function of Machine: To produce klystrons
Mass of Machine: 305 tons
Physical Dimensions: floor area approximately \(1300 \mathrm{~m}^{2}\)
Throughput/Machine (tons/year): \(1.7 \times 10^{4}\)
Power Requirements (KW/machine): 40,000
Number of Machines: 1
Number of Operators: 0
Components:


\section*{7.7: WAVEGUIDE PRODUCTION EQUIPMENT}
7.7.1 Overview: Figure 7.31 shows a "top" view of the waveguide factory. This facility is designed so that each piece of feamed glass (the material from which the waveguides are formed) progresses linearly through the facility to minimize handling of the delicate sheets.

Waveguides for the SPS essentially consist of a closely dimensioned foamed glass box structure coated internally with a thin layer of depos'ted aluminum. In the baseline SMF dedign, foamed glass is produced by mixing lunar anorthosite and chemical foaming agents, and then thermally cycling the mixture in a mold. The resultant monolithic block of material is sliced into thin shects using tungsten blade saws.

The sheets are then smoothed or their 'interior' faces by removing surface irregularities with lasers. A 7-micrin thick coating of aluminum is then deposited onto the smoothed surface, using direct vaporization. The coated sheets are then cut by laser into strifs which will form the sides of the waveguides. Simultaneously, those strips which constitute the 'front' radiating surface (one in four) are slotted, and those strips which constitute the 'tack' faces of the waveguldes are holed.

Finally, the waveguides are automatically assembled around guices by automatic manipulators. The purpose of the guides is to ensure that the internal dimensicns of the


FIGURE 7.31: LAYOUT OF WAVEGUIDE FACTORY
waveguide meet the tolerance requirements by building the box around accurately dimensioned structures. The sides of the box are fused together along adjacent edges by laser beams. Careful handing of foamed glass throughout the production area is required, because of the fragility of the material when in the form of thin sheets. The completed waveguides are stored in padded racks Which are carried by internal transport system to the input/ output station.
7.7.2 Glass Foaming Facility: On earth, foamed glass can be manufactured using volcanic ash; similar materials are available on the lunar surface. Lunar anorthosite arrives at the SMF in particles of diameter 5 microns -- the size necessary for the foaming process. Therefore the usual requirement for a ballmill to crush the particles is eliminated.

A flux and chemical foaming agents are added to the glass. (A small amount of grog, which is fired batch material reground to granular form, may also be added to help control the resultant density.) Flux is added to yield more cellulation in the glass and to achieve the proper viscosity for foaming. The viscosity achieved enables the foaming temperature to be lowered to 800 C , which is \(750^{\circ} \mathrm{C}\) less than the normal melting temperature of anorthosite. The flux includes NaOH or \(\mathrm{Na}_{2} \mathrm{SiO}_{3}\) and \(\mathrm{Na}_{2} \mathrm{O}\).

The anorthosite and foaming agents must be blended thoroughly in a continuous mixer (Fig. 7.32) to produce an amalgam ready for foaming. The mixer consists of a series of propeller-like blades -- counter-rotating to provide maximum turbulence in the powder .- which are designed to impinge on large numbers of particles and to impart a velocity with Doth a tangential and axial romponent (thereby creating flow through the mixer). During mixing, the particles. ne floating free in vacuum. Each mixing blade has a tip radius of .28 m , and the mixing section is estimated to be 5.4 m long, giving a volume of \(1.32 \mathrm{~m}^{3}\). The residence time of a particle in the

mixer is estimated to be roughly 20 minutes, at a particle density of \(500 \mathrm{~kg} \mathrm{~m}^{3}\), giving a mass throughput rate of \(2000 \mathrm{~kg} / \mathrm{hr}\).

The foaming mixture is charged into stainless steel molds, and heated (over a period of about 4 hours) to foaming temperature \(\left(800^{\circ} \mathrm{C}\right)\). Heat is supplied through coils, cc *ined within the molds themselves, at a rate of 1000 kW . On foaming, the mixture expands to about twice its volume as a powder. The foamed glass is then slowly cooled ('annealed') over a peried of 8 hours at a rate controlled by a thermal control unit; this unit controls the flow of ccolant through channels in the sides of the mold.

The product is a monolithic block of foamed glass (10 x \(.8 \times .6 \mathrm{~m}\) ) of density \(800 \mathrm{~kg} / \mathrm{m}^{3}\). Each block represents roughly two hours worth of production (at \(2000 \mathrm{~kg} / \mathrm{hr}\) ) and is sized so that the longest waveguide may be formed from a single sheet. At the conclusion of the cooling cycle, the glass is removed from the mold by a manipulator system.

The molds are each charged (sequentially from the mixing unit) for 2 hours out of every 14. The powder is initially compacted by bring the mold sides toward the center. Heat is supplied directly from heaters in the walls of the mold, al the walls move outwards to their full .8 m displacement as foaming occurs. This allows more even heating during the foaming operation. Additionally, the walls are moved outwards again after annealing, to ease the removal of the foamed glass blocks after cooling.

\section*{SPECIFICATION SHEET}

Machine Name: Glass Foaming Facility
Function of Machine: Production of foamed glass for waveguide manufacture.
Mass of Machine: \(\quad 228,000 \mathrm{~kg}\)
Physical Dimensions: mixer: blade radius 28 cm , length 5.4 m mold (internal) \(10 \times .60 \times .80\) meters
Throughput/Machine (tons/year): \(1.8 \times 10^{4}\)
Power Requirements (KW/machine): 7600
Number of Machines: 1
Number of Operators: 1
Components:
\begin{tabular}{|c|c|c|}
\hline  &  &  \\
\hline 1 & 75000 & 35 \\
\hline 7 & 850 & 80 \\
\hline 7 & 21000 & 1000 \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
7.7.3 Foamed Giass Cutter: The blocks of foamed glass produced in the glass foaming fa-ility must be cut into sheets of 2.5 mm thickness before being coated with the layer of conducting aluminum. This slicing operation is achieved in twe stages, by tungsten-blade saws. In the first cutting operation, the \(10 \times .8 \times .6 \mathrm{~m}\) foamed glass block is sliced intc 8 blocks \(10 \mathrm{~m} \times .8 \mathrm{~m} \times 7.35 \mathrm{~cm}\). These smaller blocks are then fed one by one into a 20 blade saw whose output is 21 sheets \(10 \mathrm{~m} \times .8 \mathrm{~m} \times 2.5 \mathrm{~mm}\). The sheets produced are dispatched to the smoothing area.

The cutting section must, in addition to the sawing equipment, include conveyors for handling of the foamed glass blocks. Tha delicate foamed glass sheets are handled between soft conveyors in order to minimize damage.

Kerf removal is achieved by imparting an electrostatic charge to the debris via the saw blade. An oppositely charged belt is run past the cutting area to carry away the particles to a disposal area.


FIGURE 7.33: FOAMED GLASS PITTER

\section*{SPECIFICATION SHEET}

Machine Name: Foamed Glass Cutter
Function of Machine: To cut foamed glass blocks into sheets \(10 \mathrm{~m} \times .8 \mathrm{~m} \times .0025 \mathrm{~m}\)
Mass of Machine: 5900 kg
Physical Dimensions: \(24 \mathrm{~m} \times 2 \mathrm{~m} \times 3 \mathrm{~m}\)
Throughput/Machine (tons/year):1.3 x \(10^{4}\)
Power Requirements (KW/machine): 23
Number of Machines: 1
Number of Operators: 0
Components:
\begin{tabular}{|l|l|c|c|}
\hline Eight Blade Saw & 1 & 1700 & 5 \\
\hline Twenty Blade Saw & 1 & 4000 & 12 \\
\hline Handling Equipment & 1 & 170 & 5 \\
\hline Kerf Removal System & 1 & 20 & .5 \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
1.7.4 Foamed Glass Smoother: The faces of the foamed glass sheets leaving the cutting area have surface irregularities which must be removed before deposition of aluminum. A good finish is required on the surface to be coated in order to ensure that the coating itself is smooth. (An irregular inner surface would lead to a loss in the waveguide efficiency.!

The waveguide smoothing operation uses two pulsed lasers (see fig. 7.34) to burn off any surface irregularities. One laser is positioned so that the beam passes across the surface of the foamed glass she \(t\) which is travelling at 0.1 m per second. This laser burns off material protruding above the plane of the foamed glass surface. A second laser sweeps the surface from directly above to fuse any remaining irregularities. This laser's beam is focused to a wider spot than the first laser's, since its function is to fuse raili. than vaporize.

Each of the lasers has a beam power of 1 kW which, after allowing for an efficiency of \(10 \%\) require an input power of 10 kW . ( n `asers are used because their operating wavelengths are suita... for cutting glasses.


\section*{SPECIFICATION SHEET}

Hachine Name: Foamed Glass Smoother
Functinn of Machine: To smeoth rough surface of foamed glass
Mass of Machine: 8250 kg
Physical Dimensions: \(12 \mathrm{~m} \times 2 \mathrm{~m} \times 3 \mathrm{~m}\)
Throughput: Machine (tons/year): \(4.3 \times 10^{3}\)
Pisiner Requirements (KW/machine): 25
Nuaber of Machines: 3
Number of Operators: 0
Components:
\begin{tabular}{|l|c|c|c|}
\hline Laser & 2 & 4000 & 10 \\
\hline Radiator Pump & 1 & 40 & 1 \\
\hline Conveyor System & 1 & 210 & 5 \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
7.7.5 Direct Vaporization of Aluminum Coating: In order to operate as waveguides, the internal surfaces of the foamed glass assembly must be coated with a 6.7 micron thick layer of aluminum. The reference SMF design uses an electron beam direct vaporization technique to deposit the aluminum at a rate of 50 microns per minute.

As shown in Fig. 7.35, the slabs of aluminum are positfoned above the deposition surface, and are subjected to Dombardment by a focused electron beam. The aluminum vaporizes and travels to the deposition surface (the foamed glass sheet). The Al is deposited at 50 microns/minute. Therefore, for a travel speed of .1 meters/sec, the deposition section must be .8 meters long.

This process and equipment is similar to the direct vaporization used in solar cell production. Such equipment is discussed in greater detafl in the solar cell production equipment descriptions (see sec. 7.8.3). Cost and sizing of the waveguide coating equipinent is based on the solar cell factory designs.


FIGURE 7.35: DV OF ALUMINUM COATING

\section*{SPECIFICATION SHEET}

Machine Name: Waveguide DV of Aluminum
Function of Machine: To deposit internal conducting surface on foamed glass waveguides.
Mass of Machine: 1000 kg
Physical Dimensions: \(12 \mathrm{~m} \times 2 \mathrm{~m} \times 3 \mathrm{~m}\)
Throughput/Machine (tons/year): \(4.3 \times 10^{3}\)
Powe: Requirements (KW/machine): 8y
Number of Machines: 3
Number of Operators: 0
Components:
\begin{tabular}{|l|c|c|c|}
\hline EB Gun & 5 & 17 & 17 \\
\hline Gun Cooling System & 5 & 20 & .3 \\
\hline Slab Feeders & 5 & 50 & .01 \\
\hline Baffles & 4 & .25 & 0 \\
\hline Belt and Cooling System & 1 & 500 & 2 \\
\hline & & & \\
\hline
\end{tabular}
7.7.6 Sheet Cutter and Slotter: After the aluminum coating is applied, waveguide sheets are cut into strips 9.8 cm and 6.0 cm wide (see Fig. 7.36). Eight strips, four of each width, are cut from each foamed glass sheet by lasers. These strips will form the sides of the waveguides.

Next, holes in the 'back' faces and slots in the 'front'
faces of the waveguides are cut to allow the microwaves to enter and be radiated during waveguide operation. The radiating ilots must be made to tolerances of \(\pm .0127 \mathrm{~mm}\) in alignment, \(\pm .058 \mathrm{~mm}\) in length, and \(\pm .058 \mathrm{~mm}\) in spacing.
 parallel rows -- these will form the radiating surface. The other half of these strips are holed to form the inlet ports for the microwaves. These holes and slots are cut by the pulsed 1 kW lasers. Finally, another laser crosscuts the 10 m strips ta the lengths required for the various waveguides.


\section*{SPECIFICATION SHEET}

Machine Name: Sheet Cutter and Slotter
Function of Machine: To cut and slot foaned glass sheets
Mass of Machine: 56000 kg
Physical Dimensions: \(12 \mathrm{~m} \times 2 \mathrm{~m} \times 3 \mathrm{~m}\)
Throughput/Machine (tons/year): \(\quad 6.5 \times 10^{3}\)
Power Requirements (Kw/machine): 21
Number of Machines: 2
Number of Operators: 0
Components:
```1
```

Laser	14	4000	10
Radiator and Pump	1	20	1
Conveyor System	1	170	5

7.7.7 Waveguide Assembler: The waveguide assembly system is shown in Fig. 7.37. Manipulator arms maneuver the strips of foamed glass into position around a set of guides whose purpose is to ensure the dimensional accuracy of the waveguide cross-section.

Three sides of the 'box' are formed around the internal guides (as shown in the figure). The fourth side is then guided into position with the internal guides removed. Once in place, the edges of adjacent sheets are fused together by a 1 kW pulsed laser beam. The completed waveguides are removed from the mold and dispatched to the waveguide packaging area.

Twelve assembly stations are provided in the reference SMF design. The previous production sections produce enough completed strips to prodice three 10 -meter-long waveguides every minute. However, the actual waveguides must be produced in a variety of lengths. Assuming that on the average each $10-\mathrm{m}$ length is cut to produce twin waveguides, and that the assembly time for each waveguide is two minutes, twelve assembly stations are required.


FIGURE 7.37: WAVEGUIDE ASSEMBLY

## SPECIFICATION SHEET

Machiae Name: Waveguide Assembler
Function of Machine: To assemble foamed glass sheets into waveguides
Mass of Machine: 24100 kg
Physical Dimensions: $20 \mathrm{~m} \times 2 \mathrm{~m} \times 3 \mathrm{~m}$
Throughput/Machine (tons/year): $1.1 \times 10^{3}$
Power Requirements (Kw/machine): 9
Number of Machines: 12
Number of Operators: G
Components:

Assembly Arms	8	10	1
Interior Guides	2	15	0
Laser	4	4000	10
Radiator and ;ump	1	80	4

7.7.8 Waveguide Packager: The packager system is used to remove completed waveguides from the assembly station and to place them inco containers ready for dispatch to the outpui or storage areas.

Manipulator arms are used in the physical handing of the foamed glass between assembly and packaging. The waveguides are packaged into racks which connect two transporter carts -- as shown in Fig. 7.38. Because of the fragility of the waveguides special precautions in their handling -- such as lined containers -- are required.

Each waveguide is subjected to testing, before being dispatched, as a quality coirtrol measure. These tests include optical geometric tolerance testing to check slot positioning and alignment, and hot tests using a microwave source to obtain a measurement of the radiated output quality. The testing station is situated between the final assembly and output stations.


## SPECIFICATTON SHEET

Machine Name: Waveguide Packager
Function of Machine: To package wa eyuides in preparation for transportation to storage
Mass of Machine: 8650 kg

Physicil Dimensions: $22 \mathrm{~m} \times 2 \mathrm{~m} \times 3 \mathrm{~m}$
Throughput/Machine (tons/year): $4.3 \times 10^{3}$
Power r.equirements (KW/machine): 0
Number of Machines: 3
Number of Operators: 0
Components:

Handling Equipment	1	100	5
Waveguide Box and Racks	850	10	0
Quality Control Equipment	1	50	5

7.8.1 Overview: Figure 7.39 is a "top" view of the solar cell factory (repeating Fig. 7.5). The factory consists of two major structural sections: one containing the zone refining, mask and masking strip cleanup, and interconnect deposition sections; and the other, the deposition and assembly sections for the production of the cell arrays. Each of these structural units is attached to the central mast at discrete points, with vibration damping systems built into the joints. These joints also carry flexible power feeds and internal transport tracks.

The solar ceil factory is a planar structure, i.e. its thickness (into the paper in Fig. 7.39) is on the order of 10-20 meters. In addition, there are heat-waste radiators roughly 30 meters above and below the plane of the factory. These radiators are in a plane parallel to that of the factory, and are therefore omitted from the figure, since they woull obscure the production sequences. These radiators are discussed further in the individual equipment descriptions and in sec. 7.8.24.

The deposition and assembly section of the factory consists of parallel production lines ("strips") running perpendicular to the central mast (from bottom to top in fig. 7.39). Each production strip is 1.1 meters wide, the width of a solar panel. The strips are clustered in groups of 14


FIGURE 7.39: LAYOUT OF SOLAR CELL FACTORY
("subsections). Therefore one factory subsection produces arrays of solar cells 14 panels wide.

One such subsection is shc:rn in greater detail in Fig. 7.40. Each production strip is 104 meters long (from front to right rear in the figure). The astronaut figure is included next to the near corner for size comparison. The early stages of solar cell production are deposition processes onto belts. These belts move independently, allowing single-belt shutdowns for maintenance and repair. In each 14-strip subsection, the later array assembly stages are equipped with devices to insert spare solar panels into inoperative strips. The subsection output is therefore unaffected by single-strip failures. The factory output is boxed arrays of connected solar cell panels ("packages"), each containing an array 14 panels wide by 541 panels long ( $15.5 \mathrm{~m} \times 633 \mathrm{~m}$, unfolded).

Thus solar cells are progressively built up (layer by layer) as they move through the successive processes. The study group chose this continuous production line design for maximum automation, and for minimum handing of the fragile solar cell layers. Equipment for the succescive processes sits either above or below the moving solar cell strips. The deposition and assembly sections of the solar cell factory are designed to be entirely free of direct human operations, since the factory is unpressurized, the solar cells are extremely fragile, and the production equipment is hot (both 7.109

in the thermal sense, since many of the radiators are at $475^{\circ} \mathrm{K}$ or higher, and in the radiation sense, since electron beam guns put out x-rays). Operations within the solar cell fictory are either automatic, robotic, or remote-controlled.

Although open to vacuum, the individual processes generate low pressures of deposition vapors, and are therefore protected from each other by baffles (thin sheets) to avoid cintamination of product and equipment. Hence the 'box' ap$p$ arance of the deposition sections in Fig. 7.40 .

Also shown in Fig. 7.40 is a "crawler". Such crawlers meve along guide tracks which run over (or below) each process, extending across the factory. Crawler tracks are shown as horizontal lines across the deposition and assembly sections in Fig. 7.39. The crawlers feed, maintain, and replace components of individual processes across the strips (for exampl^, crawlers dedicated to the support of the aluminum rear contact deposition move along one track across the width of the factory). The crawlers pick up input materials and replacement parts from the internal transport system. Internal transport tracks cross the crawler tracks at several lcistions across the factory. Crawlers and internal transpnrt devices are discussed in Chap. 8, "Support Equipmert Specifications". Insite repiirs in the deposition and assembly sections are performed by free-flying teleoperators. These are de-
scribed in Chap. 9, "Maintenance and Repair".
Figure 7.41 is a side-view schematic of a production strip, showing the successive deposition and assembly processes and the dimensions of their sections. The solar cell strips travel through the process sections (from left to right in the figure) at $.85 \mathrm{~m} / \mathrm{minute}$. The individual processes are discussed in the following sections of this chapter. In addition, these sections include descriptions of zone refining (Sec. 7.8.4), mask cleanup (7.8.11), interconnect deposition (7.8.14), and masking strip cleanup (Sec. 7.8.18).

The total number of production strips is computed by assessing the effect of the duty cycles of deposition and assembly sections on the maximum production capability. These calculations are discussed ir Chap. 10, "Line Item Costing". The total number of strips in the reference $S M F$ is 266 , grouped in 19 clusters.


FIGURE 7.41: SOLAR CELL DEPOSITION AND ASSEMBLY: SIDE VIEW SHEMATIC
1.8.2 Thermal Belt: The thermal belt (see Fig. 7.42) serves as a deposition surface for the aluminum rear contact, silicon wafer, and aluminum top contact of the solar cell. It also carries the solar-cell wafers through recrystallization processes. The belt runs trhough 33 meters of deposition chambers and other production equipment, then curves around a 7.5 meter diameter roller and returns to the start of the production line. The belt's length is therefore 81 meters; each belt is $1 . l$ meters wide, the width of a panel of solar cells. Modeling the belt as 5 mm-thick copper yields a belt mass of 4000 kg .

To provide thermal control of the deposition surface during the process steps, the belt travels over fixed thermal control plates. These cool the belt, as required by the processes above. Heat is extracted by liquid sodium passing through the plates. To avoid stoppage of several belts by single failures, each belt has its own set of thermal plates, with their own thermal control systems. (Given present knowledge, the precise thermal requirements [e.g. surface tempersture, thermal gradient, CTE] of the belt surface are unknown an exact belt design is therefore difficult. An alternative to the belt-and-plate design in the reference SMF is a recently invented rod-and-sprocket belt made of stainless steel [Refs. 7.3, 7.4]. This belt may prove more reliable in space applications.)


FIGURE 7.42: THERMAL BELT

The belts are grouped in sets of 14 , with the belts in each group 1 mm apart, forming a nearly continuous deposition area. (Each group of belts produces 'packages' of solar cells, arrays 14 panels wide.) Between groups, the belts are separated by an open space 3 meters wide. Since the returning belts in a group also form a nearly continuous surface, power cables and coolant pipes to the group's thermal plates are routed to the gap between groups ant out of the belt system. The coolant pipes carrying sodium at $.5 \mathrm{~m} / \mathrm{sec}$ are then routed to 1 mm thick aluminum sheet radiators. The 4.5 meter gap between the upper and lower belt surfaces contains the needed thermal plates, power feeds, piping, and structural supports. The three-meter gap between groups of belts, besides allowing entry and exit of power feeds and coolant pipes, also provides access to the inside of the thermal belt system for teleoperators.

Similar thermal belts are also used in the deposition of $\mathrm{SiO}_{2}$ optical covers and substrates. These belts are listed as components of those processes, however. The thermal belt in this section is described separately because it is shared by several processes. For all the thermal belts in a deposition strip, about 2.2 tons of liquid sodium will be required, assuming a coolant flow rate of $.5 \mathrm{~m} / \mathrm{sec}$ through 100-meter-long pipes. Individual coolant requirements for each machine are listed under their sections. Pipe masses were assumed to be $15 \%$ of the coolant mass, based on a case
example design. For each thermal belt, the mass of thermal control equipment is estimated at 200 kg . In addition, drive equipment to turn the belt rollers is estimated at 1000 kg per strip.

At the end of the belt, when the deposition surface curves down around the 4.5 -meter-diameter roller, the 1.1 meter wide strip of deposited material (rear contact, silicon wafer, and top contact) is peeled from the thermal belt and travels on through more production steps.

## SPECIFICATION SHEET

Machine Name: Thermal Belt
Function of Machine: To serve as deposition surface for several
Mass of Machine: 5250 kg
Physical Dimensions: $38 \mathrm{~m} \times 1.1 \mathrm{~m} \times 5 \mathrm{~m}$ (not including radiators)
Throughput/Machine (tons/year): .-.
Power Requirements (KW/machine): 45
Number of Machines: 266
Number of Operators: 0
Components:

Belt	1	4000	0
Drive/Motor	1	1000	20
End Rollers	2	50	5
Thermal Control	1	200	20

7.117
7.8.3 DV of Ai Rear Conta:t: The solar cell production process begins with the direct vaporization of the $2-m i c r o n$ thick aluminum rear contact. The process is illustrated in Figs. 7.43 and 7.44. As shown in the figures, aluminum atoms are boiled off slabs by electron beams, and the atoms are deposited onto the thermal belt.

The electron beam (EB) guns fire beams of electrons into magnetic deflection and tracking coils near the surface of the belt. These coils deflect the beams upward and track them ( 2 mm spot) along the underside of the Al slabs, vaporizing the material. This geometry allows the positioning of the slabs 50 cm from the belt. At the deposition pressure of roughly $10^{-6}$ Torr, this distance is the mean free path of the atoms, and the Al therefore deposits with a minimum of atomic collisions.

This geometry also allows the thermal belts to be edge to edge, since neither equipment nor electron beams need to cross the belt surface. Neighboring belts therefore benefit from some of the vaporized material, improving the evenness of the deposition.

In this reference design, the thermal belt speed is set at .85 meters/minute, and the $A l$ deposition rate at 4 microns per minute. The required deposition length is therefore . 43 meters.

The aluminum slabs used in the process are produced at


FIGURE 7.43: DV OF AL REAR CONTACT: SIDE VIEW


FIGURE 7.44: OV OF AL REAR CONTACT; OBLIQUE VIEW
the SMF by the continuous caster, and are therefore 2 cm thick and 70 cm high. Their length is set at 1 m , so that they fit across the $1.1-m-w i d e$ belt, with room at their ends for slab feeding mechanisms. The slabs are fed from magazines sized to hold 4 reserve slabs each.

Assuming that the deposition is $67 \%$ efficient (2/3 of the slab material ends up on the belt, slabs are used up at the rate of one every 165 hours ( 6.9 days). New and old siabs vacuum-iveld themselves together at their edges as their boundary approaches the vaporization surface. Therefore an old slab is completely vaporized as a new one takes its place.

The remaining $1 / 3$ of the slab material is vaporized and lost either to bafiies or to open space. Although the deposition process does not require a pressure vessel (the lower the pressure, the better the deposition), the vaporized Al can contaminate neighboring equipment and processes. Therefore the deposition section is surrounded by baffles. These thin sheets of material serve as line-of-sight barriers to the $A l$ vapor, shielding the $E B$ guns, deflection coils, and slab feeding mechanisms.

The baffles are of two types. "Panel" baffles are those shielding the slab feeding mechanisms. They are made from 100-micron thick teperature-resistant material, e.g. giass cloth. (Althougn the reference SMF brings bafflcs from Earth, glass c'oth baffles could also be manufactured at the SMF by 7.121
machines similar to the electrical insulation winders.) Each strip's rear contact deposition section has a separate panel baffle; this baffle has two slits through which the slabs are fed into the deposition chamber. Estimating the deposition rate onto the panel baffles of .35 microns/minute, and allowing a 2500-micron layer of aluminum to accumulate before baffle replacement, each panel baffle is replaced every five days. Panel baffles are held in place by double tracks so that new baffles can be inserted before the old ones are removed, thus avoiding production stoppages.

The other type of baffle is the "side" baffle. Side baffles are positioned across the ends of the deposition section, shielding the $E B$ guns and the next process in the production line. These baffles extend down to within a millimeter of the deflection coil output port or thermal be?t surface. Unlike the panel baffles, side baffles are shared by the 'DV of rear contact' sections of all 14 strips in a solar cell factory subsection. Each side baffie is a 100-micron thick sheet of material (e.g. glass cloth) which is slowly unwound from a 310 -meter roll at the edge of the 14-strip subsection. The baffle is guided across the 14 strips, it is discarded as process waste. Estimating a . 7 micron/minute deposition on the side baffles (higher than the panel baffle because of the geometry of the deposition) and allowing a 500-micron buildup before discard, one roll
of baffle lasts 10 days. Since new rolls can be attached directly to old ones, replacement of side baffles does not stop production.

The use of rolls of side baffles is possible because the side baffle surface is uninterrupted (i.e. no slits are required, as in the panel baffles). Thene are no baffles between strips, since deposition on neighboring strips is beneficial to the process.

Electron beam guns are described in some detail in Sec. 7.2.7. Unlike the slab cutier, however, for the EB guns in the solar cell factory, the $100^{\circ}$ to $170^{\circ}$ bending of the eleciron beam places the filament in the $E B$ gun out of sight of the impact point, avoiding filament deterioration problems. Filaments are replaced every 40 hours by an automatic reload mechanism froma 20 -filament magaine mounted on the gun. Tine reloader uses two filament cartridges, thus stopping the gun for only a few seconds during reload. This operation therefore does not stop production.

The total input power to each EB gun used in the DV of the aluminum rear contact is 3.1 kH . Focusing and deflection requires $20 \%$ of this power of the remainder, $50 \%$ is wasted as heat in the EB gun, and tise other $50 \%$ is the beam power. Electron scattering and thermal waste in the slab wasies $30 \%$ of this beam power, leaving (.8)(.5)(.7) $=28 \%$ of the original input power to vaporize the slab (including 7.123
the vapor wasted on the baffles). At this efficiency, one 6.2 kW EB gun is sufficient to deposit the A! at 4 nicrons per minute. However, since the solar cell material cannot be routed from one strip to another during the deposition processes, failure of the EB gun would halt the entire production line. Therefore two 6.2 kW guns are used, for redundance; these guns operate at 3.1 kW during normal operations.

The latent heat of vaporization released by the aluminum vapor when it deposits onto the belt requires an active cooling system to prevent intersolution of solar cell layers and eventual melting of the belt. Assuming $40 \%$ of the nominal input power to the guns [equivalent to the beam power = ( 6.2 kW )(.8)(.5) $=2.5 \mathrm{~kW}]$ must be removed through the belt, and that the liquid sodium (heat capacity 1340 joules/kg ${ }^{\circ} \mathrm{K}$ at $475^{\circ} \mathrm{K}$ ) enters at $400^{\circ} \mathrm{K}$ and leaves at $600^{\circ} \mathrm{K}$, then each strip's 'DV of rear contact' section requires . $01 \mathrm{~kg} / \mathrm{sec}$ of liquid sodium to keep the thermal belt below $70^{\circ} \mathrm{K}$. If the sodium flows at $.5 \mathrm{~m} / \mathrm{sec}$ through 100 meters of piping (out of the thermal belt, to a radiator roughly 30 meters away, and back), then 1.9 kg of sodium is required for ea:h section. The waste heat is radiated away from a $1.1 \mathrm{~m}^{2}$ sheet of aluminum ( 1 mm thick), located below the returning portion of the thermal belt. Althcugh each strip has its own thermal plate and pump, piping and radiators for the 'DV of 7.124
rear contact' sections of the 14 strips in a subsection could be combined, since the duty cycles of these components is virtually 100\%. The pump, piping, fittings, radiators, and control system for one strip's 'DV of rear contact' thermal control are estimated at 20 kg .

Of the $50 \%$ of the inpit onwer remaining, it is assumed that $10 \%$ is lost in escaping vapor and baffle riciation. The remaining $50 \%$ must be dealt with in the electivn beam gun. $A$ heat pipe conducts waste heat from the gun to a pyrnlytic graphite radiator above the deposition section. The radiator is rectanguiar, has an area of $.25 \mathrm{~m}^{2}$, and operates at $720^{\circ} \mathrm{K}$ when wasting 3.1 kW . The heat pipe is iong enough to allow handling of input slabs by manipulators without removing the radiators. The p;rolitic graphite radiators are modeled on those suggested by Raytheon for amplitrons (Ref. 7.5), and are estimated to mass 10 kg (including heat pipe).

## SPECIFICATION SHEET

Machine Name: DV of Al Rear Contact
Function of Machine: To DV aluminum onto the thermal belt
Mass of Machine: 164 kg
Physical Dimensions: $\quad 1 \mathrm{~m} \times 1.1 \mathrm{~m} \times 3 \mathrm{~m}$
Throughput/Machine (tons/year): ---
Power Requirements (Kw/machine): 6.2
Number of Machines: 266
Number of Operators: 0
Components:

EB Gun	2	20	3.1
Filament Magazine	2	.04	0
Slab Feeder	2	50	.01
Panel Baffles	1	.05	0
Side Baffles	2	.05	0
Side Baffle Guide	2	2	.01
Cooling System	1	20	.004

7.8.4 Zone Refiner: The reference SMF receives metallurgical grate silicon in slats $1.2 \mathrm{~m} \times .42 \mathrm{~m} \times .04 \mathrm{~m}$. These slabs are zone refined in a separate facility to reach semiconductor grade purity. The study group assumed that the Si from the Moon would be sufficienctly pure that 10 zone refining passes would be sufficient to reach the needed 99.999\% purity.

The zone refiner is shown in Fig. 7.45. slabs travel one after another through the machine at a speed of 2.5 cm per minute. Each slab passes through ten heating coils spaced 40 cm apart; each heating coil uses magnetic induction to create a molten zone in the silicon slab. Behind each coil is a gas-jet ring which sprays cooling argon onto the slab sufficiently close to the induction coil to create a $670^{\circ} \mathrm{K} / \mathrm{cm}$ thermal gradient. Under those conditions the silicon at the liquid/solid interface will recrystallize at $2.5 \mathrm{~cm} / \mathrm{minute}$, and each melt zone will therefore be stationary relative to the heating coil and gas-jet ring. Each zone "travels" down the silicon as the slab moves through the machine. The leading and trailing ends of the slab are not melted, to preserve the structural integrity of the slab. In addition, a separate set of magnetic shaping coils preserves the rectangular cross-section of the slab during the process, resisting each melt zone's tendency to assume a circular cross-section in zero-g.

Thus each slab enters the zone refiner at $2.5 \mathrm{~cm} / \mathrm{m}^{\mathrm{i}} \mathrm{nu}$ te, 7.127


FIGURE 7.45: ZONE REFINER

supported and moved by a set of clamps. Shortly after the leading edge passes through the first coil, that coil is turned on and creates a melt zone. That coil stays on until shortly before the trailing end of the slab reaches it (time of operation, 46 minutes); its molten zone therefore travels through the central 1.15 meters of the 1.2 meter-long slab. Successive coils operate in the same fashion. Since the coils are 40 cm apart, the slab can have as many as tiree molten zones within it at one time. To maintain its structural integrity, the slab is passed through the coils by a series of clamps which grasp and ungrasp the middle and ends of the slab so that sections between melt zones are not left freely suspended. The clamps also serve as heat sinks to help preserve the gradients near the melt zones.

Passage of one slab through the ten heating coils takes 190 minutes. With a $10-\mathrm{cm}$ gap between slabs, the wachine processes each slab in 194 minutes. After the ten melt zones have traveled through the slab, almost all of the impurities have been crystallized in the trailing end of the slab. Allowing a $10-\mathrm{cm}$ gap between slabs, each zone refiner outputs one slab every 52 minutes. Each machine therefore produces 9500 slabs per year ( $95 \%$ duty cycle), and 60 machines are required to refine the 570,000 slabs of silicon required for the production of one $10-G W$ SPS per year.

To avoid loss of the argon sprayed by the gas-jet rings, 7.130
the zone refiners are enclosed in pressure-tight containers. Each $25 \mathrm{~m} \times 10 \mathrm{~m} \times 5 \mathrm{~m}$ container hoids six zone refiners (each $1.5 \mathrm{~m} \times 8 \mathrm{~m} \times 2 \mathrm{~m}$ ), as shown in Fig. 7.46. Each conLainer also includes two airlocks for introduction and removal of slabs and entry and exit of repair crews. The contalners are sized to allow access space for space-suited repair workers around the refiners. Hot argon is pumped from the containers to radiators for cooling, and the cool argon is returned to the gas jet rings.
siabs entering and leaving the container are handled by automatic manipulators. After refining, the silicon slabs are first placed into racks designed to hold the semiconductor grade slabs without contaminating them. Once full, a rack of slabs is passed out through the air lock and taken to a cutting area. There four $128-\mathrm{kW}$ EB guns cut off 10 cm from each end of the slab (the impure ends) and trim 1 cm from each side edge to provide a flat surface for vacum welding during deposition processes. This trim is required because the magnetic shaping coils cannot maintain a completely rectangular shape. The final slab dimensions are $1.0 \mathrm{~m} \times .40 \mathrm{mx} .04 \mathrm{~m}$.

The ten pressurized containers and the EB cutting sections are arranged into a flat shape $120 \mathrm{~m} \times 25 \mathrm{~m} \times 5 \mathrm{~m}$, with radiators above and below the equipment.

## SPECIFICATION SHEET

Machine Name: Zone Refiner
Function of Machine: Refines input metallurgical grade Si slabs to semiconductor grade
Mass of Machine: 2200 kg
Physical Dimensions: $8 \mathrm{~m} \times 1.5 \mathrm{~m} \times 2 \mathrm{~m}$ (zone refiner only)
Throughput/Machine (tens/year): 350
Power Requirements (KW/machine): 300
Number of Machines: 60
Number of Operators: 0
Components:

Induction Coil	10	35	cs
Gas Jet Ring \& Pump	10	10	1
Rod Clamps \& Drive	1	150	.2
Handling Equipment	1	50	.5
Active Cocling System for Coils	1	200	.3
Radiator	1	33	0
Container and Airlocks	$1 / 6^{*}$	6000	0
EB Cutter	$1 / 15 *$	40	128
Cooling for EB Guns	$1 / 15 *$	100	.1
Packing Containers	2	2	0
Magnetic Containment Coils	10	30	3
Active Cooling System for Argon	$1 / 6 *$	30	1

(*number of compenents/number of refiners)
7.8.5 DV of Silicon Wafer and P-Dopant Implan'dtion: The next step in the buildup of solar cells is the deposition of 50 microns of polycrystalline silicon (see $-i g .7 .47$ ) ont the aluminum rear contact. The details of this deposition equipment are similar to the DV of aluminum rear contact (see Sec. 7.8.3). Zone refined slabs of silicon (1.0 m x. $4 \mathrm{~m} \times$ .04 m ) are vaporized at the rate of one every 3.2 days (magazine holds six extra slabs). The total deposition length is 10.63 m assuming a 4 mic con/minute deposition rate. To avoid too oblique an angle when the electron beam strikes the slab (a shallow incidence angle would result in electrons bouncing off the slab), the deposition is divided into two sections each 5.3 m long. The shallowest angle of incidence is therefore $11^{\circ}$.

The EB guns are mounted vertically in clusters of five at the begirning and end of each section. Each of the 7.3 kW guns is assigned a particular slab. In each 5-gun cluster, if one gun gres off, the other four increase their power levels by $\mathbf{2 5 \%}$ to compensate for loss of DV power. Pyrolitic graphite radiators ( 14.6 kg each) cool the guns at a temperature of $640^{\circ} \mathrm{K}$. The total input power to the machine is 146 kW based on a DV power of 408 kW needed to raise si?icon from $60^{\circ} \mathrm{K}$ to its boiling point at the required rate.

Side roll baffles (identical tu those described in oV of Al rear contact) are used up every 55 hours estimating


3 microns/minute depositon on the side baffles). Panel baffles between the slabs are replaced every 27 hours (1.5. microns/minute deposition).

The temperature of the deposition surface is actively controlled to prevent intersolution of the aluminum and silicon and to control the crystalline structure of the silicon layer. To cool the thermal plates under the belt, liquid sodium is routed through the plates, to a radiator roughly 30 meters below the thermal $t$ lt, and back to the thermal clate (total travel distance is 100 meters). To remove $40 \%$ of the total input power $[(.4)(146 \mathrm{~kW})=58.4 \mathrm{Kw}] .22 \mathrm{~kg} / \mathrm{sec}$ of liquid sodium is required for each strip $\left(400^{\circ} \mathrm{K}\right.$ input, $600^{\circ} \mathrm{i}$ outpit). Assuming a flow rate of $.5 \mathrm{~m} / \mathrm{sec}$ in the piping, 43.6 kg of liquid sodium are required for each strip. The heat is wasted to space by a $25.2 \mathrm{~m}^{2}$ aluminum sheet radiator (average temperature is $475^{\circ} \mathrm{K}$ ). Since this area is 2.2 times the deposition area, the radiator extends beyond the silicon depusition section.

Ion implantation of the p-dopant (borol) occurs during the first 45 microns of silicon deposition. Beginning just after the first slab, 18 ion implantation devices are interspersed between slab feeders. Each device implants boron atoms (at $10^{18}$ atoms/cm ${ }^{3}$ ) throughout a depth of 2.5 microns. There are no ion implantation devices after the last two slab feeders to allow a 5 micron layer of undoped
silicon which wili later be implanted with phosphorus. RoughIy $150 \mathrm{~kg} /$ year of boron (shaped into 2 kg rods) is needed. The ion implantation device is identical (except for lower accelerating voltage) to that described in the section on ion implantation of the $n$-dopant, phosphorus (Sec. 7.8.8).

## SPECIFICATION SHEET

Machine Name: DV of Si Wafer and P-Dopant Implantation
Function of Machine: To DV silicon onto the rear Al contact and to ion-implant p-dopant in the Si Mass of Machine: 2810 kg

Physical Dimensions: $13 \mathrm{~m} \times 1.1 \mathrm{~m} \times 2.5 \mathrm{~m}$
Throughput/Machine (tons/year): -.-
Power Requirements (KW/machine): 178

Number of Machines: 266
Number of Operators: 0
Components:
EB Gun
F.lament Magazine
Slab Feeder
Panel Baffles
Side Baffles
Side Baffle Guide
Boron Ior. Anplanter
Cooling System

7.8.6 Pulse Recrystallization. After the 50 micron wafer of polycrystalline silicon has been deposited, the grain size is increased by a two-step recrystallization process. The first -tep is a pulsed-beam recrystallization (see fig. 7.48) which transforms the original silicon crystallites into full-film-thickness columnar grains. The process uses electron beam guns delivering pulsed streams of high-energy electrons.

The beam has an average electron energy of 55 KeV , a pulse length of 200 nanoseconds, and a pulsed beam fluence of $6.3 \mathrm{~J} / \mathrm{cm}^{3}$ (1 kHEB gun output). Pulsing is accomplished by a plasma diode and an energy storage capacitor, and electrons are returned to the gun dia a metal brush sweeping across the surface of the silicon near the beam impact area.

The pulsed-beam recrystallization zone in each strip is cooled by . $007 \mathrm{~kg} / \mathrm{sec}$ of liquid sodium $\left(400^{\circ} \mathrm{K}\right.$ input, $600^{\circ} \mathrm{K}$ output) flowing through a thermal plate below the belt. Estimating a total pipe length of 100 meters to a radiator and back, and a flow velocity of $.5 \mathrm{~m} / \mathrm{sec}, 1.5 \mathrm{~kg}$ of sodium is required for each strip. The radiator is an $.9 \mathrm{~m}^{2}$ aluminum sheet radiating at an average temperature of $475^{\circ} \mathrm{K}$. In addition, the two $1.8 \mathrm{~kW} E B$ guns are cooled by pyrolitic graphite radiators ( 5.7 kg each) at a temperature of $450^{\circ} \mathrm{K}$.


## SPECIFICATION SHEET

Machine Name: Pulse Recrystallization
Function of Hachine: To recrystallize the silicon layer, causing the growth of columnar grains in the layer Mass of Machine: 40 kg

Physical Dimensions: $2 m \times 1.1 \mathrm{~m} \times 2.5 \mathrm{~m}$
Throughput/Machine (tons/year): ---
Power Requirements (KH/machine): 3.6
Number of Machines: 266
Number of Operators: 0
Components:

EB Gun	2	10	1.8
Filament Magazine	2	.04	0
Cooling System	1	20	.004

7.8.7 Scan Recrystallization: The second step in the recrystallization process is a fast-scan electron beam solid phase recrystallization (see Fig. 7.49) to grow the columnar grains to a diameter of 100-200 microns. This is done with triode guns which have accelerating voltages of 100 KeV , fast-scon velocities of $100 \mathrm{~m} / \mathrm{sec}$ with a 55 mA current, and an estimated beam diameter of .25 mm.

Since the belt speed is $1.42 \mathrm{~cm} / \mathrm{sec}, 56.8$ scans across the strip must be done per second. The gun must therefore sweep a total of 62.5 meters in one second ( 1.1 meter wide strip), well within the scanning capacity of $1000 \mathrm{~m} / \mathrm{sec}$.

The electron beam power required is .35 kW ( 5.5 kH for $1000 \mathrm{~m} / \mathrm{sec}$ scan speed). Electron current loop return and belt cooling are accomplished in the same ways as for pulse recrystallization. The scan zone is cooled by $.003 \mathrm{~kg} / \mathrm{sec}$ of liquid sodium per strip ( $400^{\circ} \mathrm{K}$ input, $600^{\circ} \mathrm{K}$ output) flowing through a thermal plate beneath the belt. Estimating a total pipe length of 100 meters to a radiator and back, and a flow velocity of $.5 \mathrm{~m} / \mathrm{sec}, .52 \mathrm{~kg}$ of liquid sodium is required for each strip. The radiator is a $.31 \mathrm{~m}^{2}$ aluminum sheet (average temperature $475^{\circ} \mathrm{K}$ ). The two . 6 kW EB guns are also cooled by $2.0-\mathrm{kg}$ pyrolitic graphite radiators at $340^{\circ} \mathrm{K}$.


FIGURE 7.49: SCAN RECRYSTALLIZATION

## SPECIFICATION SHEET

Machine Name: Scan Recrystallization
Function of Machine: To enlarge the diameter of the columnar grains in the silicon layer
Mass of Machine: 15 kg
Physical Dimensions: $2 \mathrm{~m} \times 1.1 \mathrm{~m} \times 2.5 \mathrm{~m}$
Throughput/Machine (tons/year):
Power Requiremerts (KW/machine): 1.2
Number of Machines: 266
Number of Operators: 0
Components:

EB Gun	2	5	.6
Filament Magazine	2	.04	0
Courrmy System	1	5	.002

7.8.8 N-Dopant Implantation: In order to obtain an $n-p$ junction between phosphorus and boron, an electron beam irradiated ion implantation device is used ee Fig. 7.50). The device consists of an electron beam gun, a 2 kg rod of phosphorus which is automatically fed down form a 10 rod magazine, a permanent $U$-magnet for deflecting the electron beam, an acceleration grid, and electromagnetic coils for defleting the ion beam.

The electron beam is deflected by the magnetic field to strike the flat end of the rod. A tenuous phosphorus cloud is produced which is ionized by the incoming electron beam. The positively charged ions are accelerated through a grid with a high negative potential and scanned across the width of the strip by powerful electromagnets. The ions impact and penetrate the silicon, implanting themselves into the layer.

Fifty kilograms per year of phosphorus are required for the entire factory. There are implanted at a density of $10^{18}$ atoms $/ \mathrm{cm}^{3}$. While ion implantation devices today implant to depths of less than ${ }^{2}$ microns, a 5 micron depth should be possible with a high accelerating voltage implant device, given some deve?opment. The power level of such a gun and associated systems is estimated at 1.75 kW , and its mass (including a pyrolitic graphite radiator) at 50 kg .


FIGURE 7.50: N-DOPANT IMPLANTATION

## SPECIFICATION SHEET

Machine Name: $N$-Dopant Implantation
Function of Machine: To implant phosphorus into the top 5 microns of the silicon wafer
Mass of Machine: 100 kg
Physical Dimensions: $2 \mathrm{~m} \times 1.1 \mathrm{~m} \times 2.5 \mathrm{~m}$
Throughput/Machine (tons/year): ...
Power Requirements (KW/machine): 3.5

1.8.9 Anneal: The ions bombarding the silicon in ion implantation produce crystal lattice defects in the top layers. This leads to a more amorphous structure in the bombarded zone, requiring repair of the lattice damage to restore the efficiency of the cell.

The implanted silicon is annealed by a series of .l microseconc electron beam pulses with mean electron energy of 20 KeV (see Fig. 7.51). Although the energy transferred to the silicon is only $1.0 \mathrm{~J} / \mathrm{cm}^{2}$ (. 2 kW average beam power), the pulse duration is short enough to momeniarily elevate a 2 mi cron thickness of the silicon close to its melting temperature $\left(1400^{\circ} \mathrm{C}\right)$. This penetration is enough to recrystallize and anneal the damaged layer. The silicon drops back down to the ambient temperature within a few microseconds.

The anneal zone is cooled by $.001 \mathrm{~kg} / \mathrm{sec}$ of liquid sodium per strip $\left(400^{\circ} \mathrm{K}\right.$ input, $600^{\circ} \mathrm{K}$ output) flowing through a thermal plate beneatir the belt. Estimating a total pipe length of 100 meters to a radiator and back, and a flow velocity of $.5 \mathrm{~m} / \mathrm{sec}, .3 \mathrm{~kg}$ of 1 iquid sodium are required for each strip. The radiator is a $.17 \mathrm{~m}^{2}$ aluminum sheet at an average temperature of $475^{\circ} \mathrm{K}$. The two . 4 kW EB guns are cooled by . 8 kg pyrolitic graphite radiators at $310^{\circ} \mathrm{K}$.


FIGURE 7.51:. ION IMPLANTATION DAMAGL ANNEAL

## SPECIFICATION SHEET

Machine Name: Anreal
Funcion of lachine: To anneal aut the ion implantation danage Mass of Machine: 15 kg
Physical Dimensions: $2 \mathrm{~m} \times 1.1 \times 2.5 \mathrm{~m}$
Throughput/Machine (tons/year):
Jower Requirements (KW/machine): . 8
Number of Machines: 266
Number of Operators: 0

## Coimponents:

 n the silicon wafer| ES Guns | 2 | 5 | .4 |
| :--- | :---: | :---: | :---: |
| Filament Magazine | 2 | .04 | 0 |
| Cooiing Systen | 1 | 5 | $.00 i$ |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

7.8.10 DV of Front Al Contact: To produce power from a solar cell an electrical contact must be placed on top of the silicon wafer. This contact must provide conducting paths over the surface of a cell, yet not prevent incoming sunlight from impinging directly onto the silicon surface. The top contact is therefore a comb-like pattern, consisting of 1 micron thick aluminum y.id finjers, each 50 microns wide, altogether covering 5-7\% of the cell surface. The fingars all lead into a collector bar at the edre of the cell which gathers the current.

These patterns are vapor deposited through shadow masks (each one strip wide) positioned near the silicon surface and moving with the belt at the same speed of $.85 \mathrm{~m} / \mathrm{min}$ (see Fig. 7.52). The aluminum is direct vaporized (in the same fashion as the aluminum rear contact) to a depth of 1 micron. To alleviate structural problems in a single shadow mask for the entire pattern, the deposition is done in two steps: first the grid fingers are deposited through a mask, then the collector bars are deposited through another mask. For each deposition step, the deposition rate is 2 micrans/minute, and the deposition length is .43 m .

The masks are unwound from rolls, travel with the solar cell strip during contact deposition, and are rewound on takeup rolls. Aluminum is deposited on the masks as well as the solar cells, so the used rolls are taken to a separate facility for brush cleaning. Assuming the roll will iast for two


FIGURE 7.52: OV OF ALUMINUM FRONT CONTACT

633 meter-long solar cell array segments, the .5 mm-thick mask would be 1266 m long (with a roll radius of about .5 m) and last about one day. The mask material must be strong enough to be used and cleaned without deformation, resistant to vacuum, radiation, and temperature, and inert to aluminum. Materials such as kapton and teflon are possibilities, but further research is needed to verify their suitability. Assuming a material with the density of teflon, each roll would mass roughly 300 kg .

To avoid production stoppages, the masks are switched from one roll to another by automatically splicing the lead end of the new roll to the tail end of the old one. The splice is undone at the takeup roll and the lead end is threaded onto an empty roller.

The geometry of each deposition chamber is the same as for the $D V$ of the Al rear contact (see Sec. 7.8.3). Since the deposition rate is 2 microns/minute, each of the four EB guns uses 1.6 kW , and wastes heat through a 5.1 kg pyrolitic graphite radiator at $610^{\circ} \mathrm{K}$. Each slab lasts 13.8 days, and the panel baffles last 10 days. The 310 -meter side baffle rolls last 20 days.

The thermal belt is cooled with liquid sodium (.01 kg/sec, $400^{\circ} \mathrm{K}$ input, $600^{\circ} \mathrm{K}$ output) flowing through thermal plates. Estimating a pipe length of 100 meters to a radiator and back, and a flow velocity of $.5 \mathrm{~m} / \mathrm{sec}, 1.9 \mathrm{~kg}$ of sodium is required for each strip. The radiator is a $i .1 \mathrm{~m}^{2}$ aluminum sheet.

## SPECIFICATION SHEET

Machine Name: $\quad$ DV of Al Front Contact
Function of Machine: To DV 'grid-fingers' Al patterns onto the siliccn wafer
Mass of Machine: 1120 kg
Physical Dimensions: $5 \mathrm{~m} \times 1.1 \mathrm{~m} \times 5 \mathrm{~m}$
Throughput/Machine (tons/year): ---
Power Requirements (KH/machine): 8.4
Number of Machines: 266
Number of Operators: 0
Components:
EB Guns

Filament Magazine	4	10	1.6
Slab Feeder	4	.04	0
Mask	4	50	.01
Mask Guide and Rollup	2	300	0
Panel Baffles	1	250	2
Side Baffles	2	.05	0
Side Baffle Guide	4	.05	0
Cooling System	4	2	.01

7.8.11 Mask Cleanup Device: As shown in Fig. 7.53 cleaning of the teflon shadow mask (used in deposition of the solar cell top contacts) is performed within a pressurized chamber to allow gas suspension and filtration of the aluminum particles brushed from the masks. An aluminum-coated roll of mask is loaded into an evacuated outer chamber (the two-chambe: design reduces pumping requirements). After the chamber is sesled and filled with argon, the mask is automatically threaced through cleaning rollers and back to a takeup roller.

The mask is then wound from one roll to the other at 28 meters/minute (one roll in 45 minutes) while the brushes remove the alumirium. The aluminum flakes are suspended in the argon and filtered out by a gas recircualtion system. Once the mask is cleaned, the inter-chamber slits are closed and the roll chamber is evacuated. The cleaned mask is removed and another used mask is inserted. The entire cycle is estimated at 1 hour per mask, and therefore 25 mask cleaning machines are required for the factory.


FIGURE 7.53: MASK CLEANUP

## SPECIFICATION SHEET

Machine Name: Mask Cleanup Device
Function of Machine: To remove defosited Al from tefion shadow mask
Mass of Machine: 200 kg
Physical Dimensions: $6 m \times 6 m \times 2 m$
Throughput/Machine (tons/year): .-.
Power Requirements (KH/machine): 16
Rumber of Machines: 25
Number of Operators: 0
Components:

		$\begin{aligned} & \text { on } \\ & \text { x } \\ & \text { a } \\ & \text { a } \\ & \text { a } \end{aligned}$	
	1	20	1
	10	5	1
	1	10	5
	1	1	0
	1	130	0

7.8.12 Sintering of Front Al Contact: After the aluminum top contact has been vapor deposited on the silicon, an electron pulse sintering step is necessary to produce good mechanical and electrical behavior at the aluminum-silicon interface. The pulse-induced transient temperature is much lower than that necessary for implantation damage anneal. If the interface temperature is raised above the eutectic temperature of aluminum and silicon ( $851^{\circ} \mathrm{K}$ ), an alloyed interface results producing good electrical contact. The brief thermal transient ensures that the intersolution of the contact and the silicon is quenched before more than a shallow interface can result.

An electron beam pulse gun (see fig. 7.54) similar to the one used in annealing (Sec. 7.8.9) is used. Its average beam power of .l kW is less than that used for annealing because of the lower energy required to reach the eutectic temperature.

The sintering section is cooled by $.0007 \mathrm{~kg} / \mathrm{sec}$ of liquid sodium per strip. Estimating a total pipe length of 100 meters to a radiator and back, and a flow velocity of $.5 \mathrm{~m} / \mathrm{sec}, .15 \mathrm{~kg}$ of liquid sodium are required for each strip. The radiator is a $.09 \mathrm{~m}^{2}$ aluminum sheet at an average temperature of $475^{\circ} \mathrm{K}$. The two . 2 kW EB guns are cooled by .6 kg pyrolitic graphite radiators at $260^{\circ} \mathrm{K}$.


FIGURE 7.54: FRONT CONTACT SINTERING

## SPECIFICATION S:AEET

Machine Name: Front Contact Sintering
Function of Machine: To sinter the Al front contact/silicon wafer interface
Mass of Machine: 15 kg
Physical Dimensions: $2 \mathrm{~m} \times 1.1 \mathrm{~m} \times 2.5 \mathrm{~m}$
Throughput/Machine (tons/year):
Power Requirements (KW/machine): . 4
Number of Machines: 266
Number of Operators: 0
Components:


EB Gun	2	5	.2
Filament Magazine	2	.04	0
Cooling System	$!$	5	.001

7.8.13 Cell Crosscut: Immediately following contact sintering, the solar cell strip is pee?ed from the thermal belt and travels straight on, guided by rollers. The thermal belt curves around its end roller and returns to the start of the production line. The solar cell strip is then cut crosswise by a laser, forming $6.4 \mathrm{~cm} \times 110 \mathrm{~cm}$ sections (see Fig. 7.55). These sections will be interconnectd in groups of 18 to form panels, and later cut length-wise (along the strip) to form individual solar cells. Each $6.4 \mathrm{~cm} \times 110 \mathrm{~cm}$ section will become 14 solar cells.

The cutting speed is $25 \mathrm{~cm} / \mathrm{sec}(110 \mathrm{~cm}$ in 4.5 sec$)$, using a continuous wave (CW) Nd:YAG laser with a 50 -watt beam power (2.5 kW input at $2 \%$ efficiency).

A laser was chosen over EB guns for cell cutting because of anticipated problems in returning electrons to the gun, specifically those electrons which open the kerf and travel through the solar cell material. The use of lasers also avoids putting electrical surges through the cells, which could degrade the cell properties.

A solid state Nd:YAG laser was chosen over the more efficient $\mathrm{CO}_{2}$ gas laser ( $2 \%$ vs $15 \%$ ) for three reasons: a power intensity a hundred times greater can be achieved with a YAG laser (smaller kerf) because of the small angle of resolution that can be achieved with its ten times shorter wavelength (1.06 microns); $\mathrm{CO}_{2}$ laser radiation is reflected strongly by


FIGURE 7.55: CELL CROSSCUT
aluminum, which might cause delamination problems when cutting through the aluminum rear contact; and $\mathrm{CO}_{2}$ lasers are larger (up to 10 times) than YAG lasers and their gaseous laser medium is more difficult to maintain than solid state laser rods.

YAG lasers are used today in the scribing and breaking of solar cells. Solar cells at the SMF, however, will need to be cut completely through, requiring mere power. If vaporization is achieved fast enough, little heat is conducted into the cells, resulting in a narrow heat affected zone and no physical distortion of the cell material. Increasing the cutting speed also tends to decrease the degradation of those layers in the cutting region for which penetration requires relatively more input power to achieve vaporization. The waste heat (98\% of the input power) will be radiated to space at a temperature of $410^{\circ} \mathrm{K}$ by an 8.0 kg pyrolitic graphite radiator connected to the top of tre laser.

Figure 7.55 also depicts the basic laser operation. The laser rod, consisting of the host material, neodymium-doped yttrium aluminum garnet (Nd:YAG), is placed along one focus of an elliptical reflector cavity. A krypton flash lamp placed at the other focal axis optically excites the laser material (these lamps are replaced every 200 hrs by an automatic refill mechanism with a 20 !amp magazine.) The resulting coherent beam of radiatinn emanating from the partially
reflecting output mirror is mechanically deflected and focused, using mirrors and lenjes, onto the cell surface. The posiiion of the focus is set by the focal length of the final lens (usually $35-50 \mathrm{~mm}$ ) which must be protected from the metal vapor by a shielding gas. An oxygen canister attached to the laser's side provides this modest oxygen requirement. The focusing becomes more critical with thickness and melting point and requires $\pm .1 \mathrm{~mm} j-\mathrm{D}$ posicioning accuracy for reflective metals. A metal shield beneach the cutting zone obstruct the laser beam onco it cuts through the cell.

Some of the system controls needed for the laser are position of deflection miri,rs, focal lens-to-work distance for kerf compensation, shielding gas flow, laser head temperature, and beam power. Reference 7.6 discusses numerical control of lasers used for cutting in the textile industry.

## SPECIFICATION SHEET

Hachine Name: Cell Crosscut
Function of Hachine: To crosscut the solar cell material stip every 6.4 cm
Mass of Machine: 22 kg
Physical Di rensions: $.5 \mathrm{~m} \times 1.1 \mathrm{~m} \times 2.5 \mathrm{~m}$
Throughput/Machine (tons/year): ...
Power Requirements (KW/machine): 2.5
Number of Machines: 266
Number of Operators: 0
Components:

Laser	1	20	2.5
Krypton Lamp Magazine	1	.1	0
Guide Rollers	2	.5	0
Shield	1	1	0

7.8.14 DV of Interconnects: For cell and panel interconnects, the reference SMF requires 1.05 meter-wide, 50 -micron thick aluminum strips, with lengths totaling $5.1 \times 10^{6}$ meters per year. Each 633-meter-long solar cell array segment produced by the factory requires $\mathbf{2 7 . 6 \mathrm { m }}$ of cell interconnects and 1.6 meters of panel interconnects. The $3 \mathrm{~mm} \times 50$ micron $\times 1.05$ meter interconnects are produced by direct vaporization in a separate facility. Eleven hundred tons of aluminum are supplied to this process (in $1 \mathrm{~m} \times .7 \mathrm{~m} \times 2 \mathrm{~cm}$ slabs from the SMF continuous caster) to deposit 740 tons of interconnects, enough for one SPS.

As shown in Fig. 7.56, five deposition belts moving at 2 m/minute through 5 -meter-long deposition sections are used to deposit the 50 micron thick interconnects. Depositing at 20 microns/minute requires 347 kW per belt, or 10 EB guns each receiving 34.7 iw. Geometrically, the equipment is similar to the sections for Al rear contact deposition (Sec. 7.8.3) and for $D V$ of $\mathrm{Si}(\mathrm{Sec} .7 .8 .5)$. A total of 233 kg of liquid sodium per strip is pumped at $1 . \therefore \mathrm{kg} / \mathrm{sec}$ through the EB guns and thermal cooling plates beneath the belt ( $400^{\circ} \mathrm{K}$ input, $600^{\circ} \mathrm{K}$ output). A $135 \mathrm{~m}^{2}$ aluminum sheet radiator dissipates the heat from the liquid sodium at an average temperature of $475^{\circ} \mathrm{K}$.

After the 1.05 m wide layer of deposited aluminum is peeled form the belt, it is rolled up, with a 50 micron thick teflon film between successive layers to prevent vacuum


FIGURE 7.56: DV OF INTERCONNECTS
welding of the aluminum. Each 276 -meter-long roll is 20 cm in diameter, and lasts through 10 array segments for cell interconnectors and 170 array segmenis for panel interconnectors.

## SPECIFICATION SHEET

Machine Rame: DV of Interconnects
Function of Machine: To produce aluminum interconnect strips for panel and cell interconnection Mass of Machine: 2650 kg

Physical Dimensions: $6 \mathrm{~m} \times 1.05 \mathrm{~m} \times 7 \mathrm{~m}$
Throughput/Machine (tons/year): 740
Power Requirements (KW/machine): 358
Number of Machines: 5
Number of Operators: 0
Components:

10	25	34.7
10	. 04	0
10	59	.01
2	5	0
2	. 7	0
2	25	. 0 ?
1	1400	10
1	500	1
1	50	. 1

7.8.15 Cell Interconnection: Immediately after crosscutting, the cell-to-cell interconnect is attached (see Fig. 7.57). An interconnect feeder (see side view) slides al. 05 m wide interconnect into the 1 mm -wide slot between sections. The 50 micron thick interconnect is then electrostatically welded to the rear of the aluminum substrate of the leading section and to the collector bars of the following section. The electrostatic welder is in two units, which clamp the sections and interconnects from above and below during welding. An alignment mechanism on the lower unit ensures a 1 mm gap between sections. These two units, together with the interconnect feeder, travel with the sections at $.85 \mathrm{~m} / \mathrm{min}$ during this operation. They then return to wait for the next gap between sections. The final configuration is shown in Fig. 7.58. The $1-m m$ 'tail' on the interconnect is the end held by the feeder during clamping and welding. Mechanical cutters sever the interconnect from the interconnect strip immediately after welding.

The timing on the interconnection is such that no section is ever cut entirely loose -- it is either stilla part of the continuous strip or already connected to the one ahead of it. The exception is the section leading a panel, which is not connected to the trailing section of the preceding panel; therefore the panels are separate after this production step. Each panel oonsists of $186.4 \mathrm{~cm} \times 110 \mathrm{~cm}$ sections. Therefore

every eighteenth gap between sections is left open by the interconnecter. All the sections are held between rollers ? omitted in the figure) during all phases of the operation.

The interconnects are fed from spools of interconnect strips produced by a separate machine (see Sec. 7.8.14). The teflon film inserted between layers of aluminum (to avoid vacuum welding) is wound onto another spool as the interconnect etrip is unwound, and the tefion strips are returned to the interconnect production equipment.


## SPECIFICATION SHEET

Machine Name: Cell Interconnection
Function of Machine: Application of interconnects between cell sections
Mass of Machine: 70 kg
Physical Dimensions: $.5 \mathrm{~m} \times 1.1 \mathrm{~m} \times 1.5 \mathrm{~m}$
Throughput/Machine (tons/year): --.
Power Requirements (KW/machine): 4.1
Number of Machines: 266
Number of Operators: 0
Components:


Electrostatic Welder	1	10	.5
Interconneci eeder	1	1	1
Interconnect Roll.	1	15	0
Sensors	2	.1	.1
Variamble Speed Rollers	4	.8	.1
Motor and Tracking	2	6	1
Guide Rolers	4	.5	0

3.8.16 DV of $\mathrm{SiO}_{2}$ Optical Cover: After the $6.4 \mathrm{~cm} \times 110 \mathrm{~cm}$ sections are interconnected into 18 -section pannels, the 75 micron silica glass optical cover is deposited onto the silicon wafers, front contacts, and interconnects. The deposition is done by diract vaporization, using equipment similar to that used for the $O V$ of the $A l$ rear contact (Sec. 7.8.3) and for the DV of $\mathrm{Si}(\mathrm{Sec} .7 .8 .5)$.

As shown in Fig. 7.59, the deposition length of 15.9 meters is divided into three 5.32 m sections. The solar cell material travels at $.85 \mathrm{~m} / \mathrm{min}$ on a soft-surface belt through the deposition sections, where the $\mathrm{SiO}_{2}$ is direct-vaporized at 4 microns/minute. The belt has a soft surface to avoid putting bending stresses on the cell material, which now has interconnects protruding from its surfaces.

Each deposition section contains 10 electron beam guns and 10 slab feeders. The EB guns (clustered in groups of five) each receive 7 kW of input power. Each slab (1.0 m x $1.0 \mathrm{~m} \times .04 \mathrm{~m})$ lasts 7.9 days; the slab magazines each hold 6 slabs. The slabs are delivered ready-to-use to the SMF.

Since the panels have not yet been connected together, the collector bars of the leading sections and the rear contacts of the trailing sections in the panels must be left $u n=$ covered for later interconnection. Therefore, before the panels enter the first $\mathrm{SiO}_{2}$ deposition section, a masking device places a magnetic masking strip ( $4 \mathrm{~mm} \times 1 \mathrm{~m}$ ) over the


FIGURE 7.59: DV OF SIO OPTICAL COVER
inter-panel gap (see Fig. 7.60). The strip is magnetically attracted to the belt and rests across the two panels, holding them to the belt. The back edges of the strip are shaped to overhang the contact surface, thus shielding it without becoming attached to the panel by the $\mathrm{SiO}_{2}$. The masking strips are removed by a handing device as the panels leave the last deposition section. Each masking strip picks up 75 microns of $\mathrm{SiO}_{2}$ as it passes through the sections. When that coating exceeds .5 mm (7 passes through the sections) the masking strip is taken to a cleaning facility. Cleaned strips are returned to the deposition equipment.

In solid form, $\mathrm{SiO}_{2}$ is not sufficiently conductive to return electrons from an electron beam to the gun. During normal operation, however, the molten layer of $\mathrm{SiO}_{2}$ at the lower edge of the slab can conduct the electrons to pickup brushes at the side edges. To start the deposition process (such as after maintenance and repair shutdowns), the slab feeder heats the slab resistively along its lower edge. The problem could also be avoided by using lasers rather than EB guns, but they are not as energy-efficient ( $15 \%$ vs $50 \%$ ), and lasers with wavelengths appropriate for glass (e.g. $\mathrm{CO}_{2}$ lasers) tend to be heavy and to require more maintenance. Further experimental research on DV of $\mathrm{SiO}_{2}$ is needed to develop this process in detail.

When $\mathrm{SiO}_{2}$ is vaporized onto a surface, some chemical dissociation tends to take place, leading to a layer of sio


FIGURE 7.60: DV OF SIO OPTICAL COVER DETAIL VIEW

rather than $\mathrm{SiO}_{2}$. This can be avoided by operating the process with excess oxygen. Therefore oxygen (available from the mool) is kept in pressurized cannisters above the slabs and released toward the solar cell strip as needed. This oxygen is eventually lost to space.

The soft surface belt serves both for structural support and thermal control of the solar cell material during deposition. Each belt is 53 meters long, with geometry similar to the thermal belt used in earlier processes (Sec. 7.8.2). The belt is cooled by thermai plates. For each strip, $40 \%$ of the input power to the EB guns $[(.4)(210 \mathrm{~kW})=84 \mathrm{~kW}]$ is removed tirough the thermal plates by $.3 \mathrm{~kg} / \mathrm{sec}$ of liquid sodium $\left(400^{\circ} \mathrm{K}\right.$ input, $600^{\circ} \mathrm{K}$ output). Estimating a total pipe length of 100 meters to a radiator and back, and a flow velocity of . $5 \mathrm{~m} / \mathrm{sec}$, each strip requires 62.7 kg of liquid sodium. The radiator is a $37.2 \mathrm{~m}^{2}$ aluminum sheet at $475^{\circ} \mathrm{K}$ located roughly 30 meters below the retur.ing portion of the soft surface belt. This radiator area is 2.2 times the deposition area, and therefore extends beyond this deposition section. In addition each 7 kW EB gun wastes $50 \%$ of that power through a 13.8 kg pyro*itic graphite radiator at $630^{\circ} \mathrm{K}$.

Following the deposition and the removal of the masking strips, the solar cell material is separated from the soft surface belt and travels on to the next process. The soft surface belt curves around a roller and returns to the start of the section.

## SPECIFICATION SHEET

Machine Name: DV of Silica Optical Cover
Function of Machine: To deposit 75 microns of $\mathrm{SiO}_{2}$ onto the silicon wafer, front contact, and cell Mass of Machine: 6660 kg interconnects.

Physical Dimensions: $19 \mathrm{~m} \times 1.1 \mathrm{~m} \times 3 \mathrm{~m}$
Throughput/Machine (tons/year):
Power Requirements (KW/machine): 231
Number of Machines: 266
Number of Operators: 0
Components:

EB Gun		25	7
Filament Magazine	30	.04	0
Slab Feeder	30	60	.01
Masking Strip Handling Device	$?$	50	1
Masking Strip Magaz ne	2	5	0
Oxygen Dispenser	3	10	.001
Panel Baffles	6	.25	0
Side Baffles	6	.05	0
Side Baffle Guide	6	2	.01
Soft Surface Belt	1	3090	0
Motor/Drive	1	700	15
-in Roller	2	50	0
Conli: System	3	50	0

7.8.17: DV of $5: 0_{2}$ Substrate: Following the deposition of the optical cover, the solar cell materiai moves on to the direct vaporization of the silica substrate. As shown in Fig. 7.61, this secti, $\begin{gathered}\text { consists of two } \mathrm{SiO}_{2} \text { deposition sections }\end{gathered}$ operating on the underside of the solar cell material. The equipment in the section is exactly similar to the equipment for the deporition of the optical cover (Sec. 7.8.18), except that it is upside-down relative to that section, ard that this section is only two-thirds as long (the substrate is 50 microns thick!.

The 10.6 m deposition length (deposition rate 4 microns/ min) is divided int sections, each bith 10 EB guns and 10 slab feoders. The gins each rezeive 7 kw of power and waste $50 \%$ of that power through 13.8 kg pyrglitic graphite radiators at $630^{\circ} \mathrm{K}$. The soft surface belt is 47 meters long, and is cooled by . $2 \mathrm{~kg} / \mathrm{sec}$ cf iiquid sodium through thermai plates $\left(409^{\circ} \mathrm{K}\right.$ input, $600^{\circ} \mathrm{K}$ output). Each strip requires 41.8 kg of sodium circulated to a $24.7 \mathrm{~m}^{2}$ aluminum sheet radiator at. $475^{\circ} \mathrm{K}$, roughly 30 meters "abore" the soft surfice belt's returning portion. This radiatcr area is 2.2 times the deposition area and therefore extends beyord this deposition section.
similarly to the $D V$ of optical c ver, masking strips are applied to the inter-panel gaps to shield the trailing edges cf panel from the silica deposition. This leaves fart of the rear contacts of tue trifiling solar ceil sections e sosed for later panel incuconection. Since these strips pick up …


FIGURE 7.61: OV OF S10 SUBSTRATE

```
50 microns of sin_2 with each pass through the deposition
sections, they are used ten times before the 0.5 mm of Si0
are cleaned off in a separate facility.
The successive applications of the \(\mathrm{SiO}_{2}\) optical cover (Sec. 7.8.16) and \(\operatorname{Sin}_{2}\) substrate coat the cell interconnects with silica, thus strencthening the connections between sect \({ }^{2}\) ons within a panel. The final cross-section of a cell interconnect is shown in Fig. 7.62.
```



FIGLRE ?. 62: CROSS-SECTION OF CELL
ENTERCONNECT
$7.17^{\circ}$

## SPECIFICATION SHEET

Machine Name: DV of $\mathrm{SiO}_{2}$ Substrate
Function of iachine: To deposit 50 microns of $\mathrm{SiO}_{2}$ onto the Al rear contact and cell intérconnect
Mass of Machine:
Physical Dimensions: $13 \mathrm{~m} \times 1.1 \mathrm{~m} \times 3 \mathrm{~m}$
Throughput/Machine (tons/year): .-.
Power Requirements (KW/machine): 155
Number of Machines: 266
Number of Operators: 0
Components:

EB Gun	20	25	7
Filament Magazine	20	.04	0
Slab Feeder	20	60	.01
Masking Strip Handling Device	2	50	1
Masking Strip Magazine	2	5	0
Oxygen Dispenser	2	10	.001
Panel Baffles	4	.25	0
Side Baffles	4	.05	0
Side Baffle Guide	4	2	.01
Soft Surface Belt	1	2000	0
Motor/Drive	1	500	10
End Roller	2	50	0
Cooling System	2	50	.037

7.8.18: Masking Strip Cleanup: The silica-coated masking strids used in the direct vaporization of optical covers (Sec. 7.8.16) and substrates (Sec. 7.8.17) are cleaned in an automatic facility. This facility, conce tually similar to the mask cleanup device (Sec. 7.8.11), is shown in Fig. 7.63.

A masking strip magazine filled with coated strips and an empty magazine are loaded into an evacuated outer chamber (the two-chamber design reduces pumping requirements). After the chamber is sealed and filled with argon, the strips are automatically fed through cleaning rollers and into the empty magazine.

The silica flakes removed from the strips by the brushes are suspended in the argon and filtered out by a gas recircuiation system. Once the strips are cleaned, the interchamber slits are closed and the outer chamber is evacuated. The magazine with the clean strips is removed, and another magazine of costed strips is inserted. Estimating that each magazine holds 200 strips, each strip takes 15 seconds to clean, and the pumpdown and reloas steps take 10 minutes; each magaine-full requires 1 hour for cleaning. Based on an allowabie thickness of .5 mm of silica before cleaning (7 passes through DV of optical cover, or 10 passes through DV of substrate), and a yearly production of $9.5 \times 10^{7}$ panels per year (includirg wastage allocations), roughly $2.3 \times 10^{7}$ masking strips must be cieaned per year, and therefore 15 masking strip cleaners are required ( $90^{\circ}$ duty cycle).


FIGURE 7.63: MASKING STRIP CLEANUP

## SPECIFICATION SHEET

Machine Name: Masking Strip Cleaner
Function of Michine: To remove deposited silica from masking strips Mass of Machine: 180 kg
Physical Dimensions: $5 \mathrm{~m} \times 4 \mathrm{~m} \times 2 \mathrm{~m}$
Thr-ughput/Machine (tons/year):
Poner $\overline{\text { iequirements ( }} \mathrm{KW} / \mathrm{machine}$ ): 7
Number of Machines: 15
Number of Operators: 0
Components:

Handling and Feed Systems	1	20	1
B ushers and Drive	10	5	1
Gas Circulation Pump	1	10	5
Filter System	1	1	0
Container	1	100	0

7.8.19. Panel Alignment and Spare Panel Insertion: After the optical covers and substrates have been deposited on the $110.3 \mathrm{~cm} \times 117 \mathrm{~cm}$ panel, each panel is accelerated to lm/minute by soft-surface belts (soft-surface to avoid bending stresses, since the interconnects protrude), then guided by rollers through the panel remeval and insertion zone. The panels then enter the panel deceleration zone, where they are decelerated and aligned with their predecessors, adding to the backlog of panels waiting panel interconnection. The operations are shown in Fig. 7.64; although the figure shows this machine in two sections, the solar cell danels actually move in a continuous straight line. When the panels are accelerated to $100 \mathrm{~cm} / \mathrm{min}$, the gap between them widens to 20 cm ( 12 second time lag), facilitating removal/insertion operations. The Durpose of this arrangement is to quarantee a continuous supply cf panels to the panel interconnection, each panel aligned with its neighbors.

The first device in the panel removal and insertion zone is the defective panel shunt. If quality control devices indicate that the now-completed panels are substandard, the defective panels are diverted intu the defective panel hopper. The contents of this reper are discarded as waste during mainteriance operations.

Hext, satisfactory panels travel through the extra panel shunt. If the strip is producing panels faster than its neighbors, or if there is a stoppage in the downstrean array
assembly operations, some or all of the produced panels san be diverted into the extra panel hopper. These panels then become spare panels, to be used in factory production strips with insufficient output.

The next device in the sequence is the spare panel inserter. Should one strip be slower than the others, its backlog of panels dwindles relative to the other strips. Optical sensors report this, and a computer sends commands to speed up that strip. Should the strip not speed up, or should a strip fail entirely, such that its backlog threatens to drop to zero, the computer requests spare panels. These are inserted just before the deceleration zone. The spare panel hoppers are restocked from the panels accumulated in the extra panel hoppers. The hoppers are emptied or refilled by a "crawler" (similar to the one shown in Fig. 7.40; crawlers are described in Chap. 8). In case of breakdown of a panel insert machine, the crawler is also capable of feeding spare panels into the production strip until repair of the machine is completed.

After the removal and insertion zone, panels travel through the deceleration zone before reaching the backlog area, where the panels are moving at $.85 \mathrm{~m} / \mathrm{min}$. The objective is to stop the panel within l-2 mm of the moving trailing edge of the backlog. Optical sensors track the leading edge of the coasting panel and the trailing edge of the backlog and


FIGURE 7.64: PANEL ALIGNMENT AND SPARE<br>PANEL INSERTION

a microprocessor calculaies the intersection time and place. Computer-controlled variable-speed rollers then slow down the panels and bring them into close alignment, ready to enter the panel interconnect machine.

## SPECIFICATION SHEET

Machine Name: Panel Alignment and Spare Panel Insertion
Function of Machine: Removal and insf sare panels and panel alignment
Mass of Machine: 284 kg
Physical Dimensions: $18 \mathrm{~m} \times 1.1 \mathrm{~m} \times 2 \mathrm{~m}$
Throughput/Machine (tons/year): -.-
Power Requirements ( $\mathrm{KW} / \mathrm{machine}$ ): 10
Number of Machines: 266
Number of Operators: 0
Components:

Accelerator Belts	1	70	.5
Variable Speed Rollers	32	.8	.2
Panel Remover	2	22.5	.7
Panel Inserter	1	22.5	.7
Panel Hopper	3	30	0
Sensors	10	.1	.1
Guide Rollers	60	.5	0

7.8.20. Panel Interconnection: As shown in Fig. 7.65, the aligned panels (110 cm $\times 117 \mathrm{~cm})$ are now intercornected in a manner similar to the cells (Sec. 7.8.15). An interconnect feeder places an aluminum pariel-to-panel interconnect (14 cells wide) between two successive panels in a strip.

The side view in the figure shows that the interconnect is applied between the aluminum rear contacts at the trailing end of the leading panel and the collector bars on the leading end of the following panel. These surfaces were protected from the $\mathrm{SiO}_{2}$ deposition by masking strips (Sec. 7.8.16 and 7.8.17), and are therefore accessible to the interconnect. The panel-to-panel interconnect is electrostatically bonded in place.

The combination of panel alignment (Sec. 7.8.19) and panel interconnection produces 14 darallel strids of interconnected panels (on 14 parallel production strips) in each solar cell factory subsection. The parallei panels are lined up with each other, in preparation for structural interconnection, Which will form the $14-0$ anei wide array segments. At this stage, however, each panel consists of 16 solar-cell-material sections, each $6.4 \mathrm{~cm} \times 110 \mathrm{~cm}$; each of these will be cut into 14 solar cells.

Connections between strips of panels can be made in similar fashion, by electrostatic welding of crocs-connectors. This operation depends on the actual circuits required in the solar cell arrays, which are not entirely clear to the study group from the literature studied.


FIGURE 7.65: PANEL INTERCONNECTION

## SPECIFICATION SHEET

Machine Name: Panel Interconnection
Function of Machine: Application of interconnect between panels
Mas: of Machine: 65 kg 。
Physical Dimensions: $5 \mathrm{~m} \times 1 . \mathrm{m} \times 1.5 \mathrm{~m}$
Throughput/Machine (tons/year):
Power kequirements (KW/machine): 7.1

Number of Machines: 266
Number of Operators: 0
Components:
Electrostatic Welder
Inter: ect Feeder
Interconnect Roll
S-nsors
Variable Speed Rollers
Motor
Guide Rollers

7.8.21. Longitudinal Cut: After the panel interconnection, the strips of panels are cut lengthwise (along the strip) by a laser. This laser, similar to the one used in cell crosscut (Sec. ?.8.13), produces 13 parallel lengthwise cuts in the panels, at 7.8 cm intervals. With 1 mm kerf loss, the resulting solar cells are $7.7 \mathrm{~cm} \times 6.4 \mathrm{~cm}$, and the panels each ho: 252 cells ( $14 \times 18$ cells), as per JSC-Boeing design.

Figure 7.66 shows the cutting process. The laser cuts through the cell interconnects (but not the panel interconnects). This separates the cells from their side neighbors, leaving them connected in series along the strip, but cross-connected by the panel interconnects. As shown in the top view, the longitudinal cuts do not extend all the way through the leading panel, leaving intact the leading edge of the interconnect. Although the trailing row of cells therefore remains connected across their rear contacts, this is acceptable since the rear contacts of the pane?'s last 14 cells are connected by the panel interconnect; they are therefore electrically equivalent, and need not be physically separated. The top contacts of those cells are separate, whether or not the cells are cut apart.

The leading edge of the following panel is different, however. There the top contacts of the first 14 cells are connected by the panel interconnect, and therefore electrically equivalent. However, each rear contact has a cell between it and the equivalent top contacts, and should therefore be

separate. The cuts therefore start ahead of the cells, notching the panel interconnect.

Should it be advantageous to separate the leading panel cells as well, the longitudinal cuts can extend into the leading edge of the panel interconnect also. In that case the study group recommends that the spacing between panels be increased to 4 mm , and the panel interconnects widened accordingly. Therefore the notches cut into the panel interconnects would not structurally weaken them too much.

The laser makes all the longitudinal cuts in a 110.3 x 6.4 cm section before going on to the next. It must cut a total of 83.2 cm in 4.5 sec or about $20 \mathrm{~cm} / \mathrm{sec}$ in performing 13 longitudinal cuts. The laser is moved across the section by a tracking system, in 7.8 cm intervals. Including beam turn-on and shut-off power, the laser requires about the same power as the laser crosscutter, and therefore has the same parameters.

## SPECIFICATION SHEET

Machine Name: Longitudinal Cut
Function of Machine: To make 13 lenghtwise cuts in each panel, separating the panel sections in solar cells
Mass of Machine: 48 kg
Physical Dimensions: $5 \mathrm{~m} \times 1.1 \mathrm{~m} \times 2.5 \mathrm{~m}$
Throughput/Machine (tons/year): ...-
Power Requirements (Ku/machine): 2.6
Number of Machines: 2.66
Number of Operators: 0
Components:

Laser	1	20	2.5
Krypton Lamp Magazine	1	1	0
Guide Rollers	2	.5	0
Shield	1	1	0
Laser Tracking System	1	25	.1

1.8.22. Kapton Tape Application: As shown in Fig. 7.67 (a view from "below" the solar panel strips), kapton tape is applied both crosswise ar liengthwise to fasten adjacent panels together. Stationary rollers unroll 13 strips of tape lengthwise, onto the underside of the solar cell array, while soft rollers provide support on the topside. Each stationary roller originaliy holds 633 m of kapton tape, the length of each solar cell array 'package.'

After the sheet passes through the stationary rollers, cross rollers unroll tape across the strips, onto the intersection between successive panels; each roller is also accompanied by a soft roller for support on the topside. These rollers move along witn the panel in the lengthwise direction, at $.85 \mathrm{~m} / \mathrm{sec}$, and move back after each tape application. There are 8 crossrollers, each of which can tape 2 panel widths at a time. The crossrollers tape in a staggered manner (as shown in the figure) from row to row so that the array is entirely connected together. Each individual roller tapes only two panel widths (2.2 m) at a time, so that the failure of one crossroller will not cause a production shutdown. Spare tape rolls are stored in magazines which are periodically refilled by crawlers. The crawlers can also temporarily take over the function of a roller during repairs.

The kapton tape connects the panels into connected arrays 14 panels ( 15.5 m ) wide by 541 panels ( 633 m ) long, as per


FIGURE 7.67: KAPTON TAPE APPLICATION
the Boeing design. At full production, the entire solar cell factory could produce 19 of these 'packages' at one time, from 266 strips grouped into 19 sets of 14 . In actuality, some of these strips are down for maintenance or repair, and some are producing spare panels (see Sec. 7.8.19).

## SPECIFICATION SHEET

## Machine Name: Kapton Tape Application

Function of Machine: Application of Kapton tape to glass substrate in crosswise and lengtioise directions, bridging Mass of Machine: 215 kg separate panels

Physical Dimensions: $5 \mathrm{~m} \times 16 \mathrm{~m} 3.5 \mathrm{~m}$
Throughput/Machine (tons/year): --
Power Requirements ( $\mathrm{K} / \mathrm{/machine):} 12$
Number of Machines: 19
Number of Operators: 0
Components:

Stationary Taper	13	5	.5
Stationary Tape Refill	13	.6	0
Cross Taper	1	25	.5
Cross Tape Refill	1	.6	0
Soft Roller	22	.5	0
Guide Roller	112	.5	0
Cross Tape Motor	1	50	5

7.8.23. Array Segment Folding and Packaging: The solar cell packager accordion-folds the final solar cell product, a $15.5 \mathrm{~m} \times 663 \mathrm{~m}$ array, directly into a cushioned storage box. Vertical deflectors buckle the incoming solar array so that it folds properly (see Fig. 7.68), and a mechanical arm guides the trailing edge into the box. The filled box is pushed down below the folding section by mechanical rollers and its top is attached. At this time the box is labeled with the production strip and time and any other relevant information (e.g. defects, expected efficiency).

A crawler (dedicated to the packaging section) picks up the finished box of solar cell array. The crawler also loads an empty box into the packaging machine above the following section. Box tops are loaded below the folding section.

The crawler can carry 4 boxes at one time. Finished boxes are loaded by the crawler directly into the internal transport system for transfe: .) the input/output station.

Since a number of boxes and box tops for the 'finished' arrays are in transit and at the SPS assembly site at any time, each machine has 10 boxes and box tops allocated to it, to ensure their availability. Empty boxes and tops are returned to the SMF from the SPS assembly site. The boxes are the longest item ( 16 m long) to be handled by the SMF's internal transport system (described in Chap. 8).


FIGURE 7.68: ARRAY SEGMENT FOLDING AND PACKAGING

## SPECIFICATION SHEET

Machine Name: Array Segment Folding and Packaging
Function of Machine: Accordion-fold and package solar cell arrays
Mass of Machine: 1460 kg
Physical Dimensions: $8 \mathrm{~m} \times 16 \mathrm{~m}$
Throughput/Machine (tons/year): 2200
Power Requirements (KW/machine): 1.1
Number of Machines: 19
Number of Operators: 0
Components:

Guide Rollers	154	.5	0
Vertical Deflectors	3	10	.$?$
Box Aligrmers:	1	300	1
Trailing Edge Guide	1	50	.01
		1	5
Box Labeling		10	100

7.8.24. Note on Radiators: As described in the preceding sections, the deposition, recrystallization, annealing, and sintering processes dissipate roughly $40 \%$ of their input power by circulating a fluid through thermal plates below their deposition belts and out to l-mm-thick aluminum sheet raa.ators. Estimating that this cooling is done with liquid sodium with inlet temperature $600^{\circ} \mathrm{K}$ and outlet temperature $400^{\circ} \mathrm{K}$, the 'thermal average' temperature is $475^{\circ} \mathrm{K}$, from the formula

$$
T_{\text {rad }}=T_{\text {inlet }} \frac{\left(\frac{T_{\text {inlet }}}{T_{\text {outlet }}}\right)^{2}-1}{\frac{2}{3}\left[\left(\frac{T_{\text {inlet }}}{T_{\text {outlet }}}\right)^{3}-1\right]}
$$

(Ref. 7.7)

At this offective temperature, the radiator sizes required for the various production steps along a strip are shown in Fig. 7.69, a modification of Fig. 7.41. Each radiator has the same width as the strip (1.1 m). As the figure shows, although some radiators extend beyond their associated deposition section, the total radiator area does not extend beyond the factory area.

The radiators are roughly 30 meters away from the production strips, in a plane parallel to the factory. They therefore collectively shiela the equipment from micrometeorites. The 30 -meter distance was chosen to allow free movement of the free-flying teleoperators (described in Chap. 9) between the radiators and production equipment. The total travel distance
of the coolant was estimated at 100 meters, including travel within thermal plates and pamping systems, travel along the radiators, and the round trip between factory and radiator.

Those sections requiring coolant-fed radiators (and several other processes as well) require thermal waste system to dissipate the remaining energy input. Estimating that $10 \%$ is lost ty direct radiation from the equipment and in deposition vapors lost to space, roughly $50 \%$ of the input pows: $t$ number of processes must be dissipated. In all of these pris ises. this waste heat must be removed from electron beam guns or lasers, and these EB guns and lasers are on the opposite site of the production strip from the thermal belt radiaturs. Therefore these EB guns and laser: can be cooled by radiators on their side of the production strips.

The EB guns and lasers are cooled passively, by heat pipes feeding pyrolitic graphite radiators (except for the DV of interconnects, which are cooled by circulated coolant). Since rost of the $E B$ guns used in deposition are clustered in groups of five, each gun occupies roughly 20 cm of the $110-\mathrm{cm}$ width of the production strip. The pyrolitic graphite radiators are therefore rectangular, with width 20 cm and length equal to half the length of the deposition chamber (thus sharing the area with the $E B$ gun cluster at the other end of the chamber) such as in the DV of $\mathrm{SiO}_{2}$ (Secs. 7.8.16 and 7.8.17). In those cases where only two $E B$ guns are used, their radiators are 50 cm wide.


Given this sizing, the radiators for the EB guns range in operating temperature from $260^{\circ} \mathrm{K}$ to $720^{\circ} \mathrm{K}$. The laser radiators operate at $410^{\circ} \mathrm{K}$. Collectively, these pyrolitic graphite radiators cover the deposition sections on the side unprotected by the aluminum radiators, thus completing the micrometeorite protection of the equipment. These radiators need not be removed to access the EB guns, but at least one radiator from a cluster of five must be removed to access the slab feeders in a deposition section. The radiators are therefore desigred with disconnect fittings at the end of their heat pipes. Removal of one radiator from a cluster of five allows a crawler to slide a slab into the sectiun, mail-slot-style. The crawler then rotates the slab 90 degrees and loads it into a slab magazine. Since the radiator's EB gun can be shut down during the process (the other four take over), this does not require a production stoppage. Radiators are sized to handle the extra load when four guns assume the funcions of five.

## CHAPTER 8

SMF SUPPORT EQU:PMENT

### 8.1 GENERAL REMARKS

Fig. 8.1 is a plan view of the reference SMF. To the right side of the figure is the solar array which provides, along with emergency fuel cells, power for the SMF operations. The solar array is the only part of the facility requiring close pointing to the sun $\left( \pm 1^{0}\right)$. The rest of the factory does not require close attitude control, but should stay in the shadow of the solar array to alleviate heat waste problems and thermal deformations.

To the left of the array is the habitat, providing housing for the SMF crew. In the figure, this area is partially visible through the cut-away section of the waste heat radiators, mounted top and bottom of the habitat. A pressurized tunnel connects the living area to the rest of the factory.

The repair shop is the area in which maintenance and repair of components from the factory is carried out. This section consists of a cluster of shuttle tanks and life support equipment. Maintenance and repair are discussed in Chapter 9.

The doiking facility is close to the components factory (to minimize the movement of inputs and outputs), yet distant from the fragile solar array, solar cell factory, and habitat (in case of docking accidents). Input containers are cylinders sized to hold three months of lunar inputs each (assuming production of one loGW SPS/year). The containers are unloaded


FIGURE 8.1: "TOP" VIEH OF REFERENCE SMF
by manipulators. Output containers may also be docked to this facility and loaded by the same manipulators. The need for such containers may not arise if the SMF were at the same location as the SPS assembly site. A pressurized docking mechanism is provided for the loading and unloading of the SMF crew.

The docking facility and other sections of the SMF are connected by a network of tracks along which magnetic transporters travel. These transporters travel thrcugh the facility to supply machines, transport personnel, and place containerized materials in dedicated storage devices.

In the solar cell factory, an overhead crawler system is used to perform all routine maintenance and support operations. The crawler system is described in section 8.4. More complex repair operations in the solar cell factorv are performed by remote free-flying hybrid teleoper?tors which are described in Chapter 9.

Not shown in Figure 8.1 is the factory production control network. This three-command-lev?l factory control system uses senscrs to check output quality and machine operation and is described in section 8.4. The use of automation in factory control is discussed in Addendum II.

This chapter contains descriptions of the SMF support equipment.

## 8. 2 INPUT/OUTPUT STATION

The functions of the input/output station are described in section 6.6.1. The docking area consists of two sections; an unpressurized area in which cargo modules are loaded and unloaded, and a pressurized personnel docking area. Figure 8.2 is a rough sketch of the input/output facility.

The personnel docking area consists of a standard androgyne docking mechanism to which personnel modules are docked. Personnel then transfer through the docking ring to a pressurized tunnel leading to the habitation and repair sections of the SMF. A pressurized docking facility is used because it removes the need for transiting crew members to wear space suits. The habitat is at some distance from the docking area so that, in the event of a docking accident, a minimum of damage to pressurized areas will result.

The unpressurized docking areas are the inputioutput stations for SMF materials. Cargo modules--sized to hold three r nths worth of lunar input (for a production rate of ; SPS/year)--dock between trusswork piers. Two manipulator arms, each with a 40 m reach and the ability to move along the trusswork piers, are used to load and unload each container. A human eserator controls each of the manipulators; however, detrn ination of the order in which unloading of goods occurs is a function of the production management system (described in section 8.5). In addition to the loading and unloading of :he conta:ners, the manipulators are used to transport


FIGURE 8.2: INPUT/OUTPUT STATION
assembled DC-DC converter radiators from their production area to the output station.

The input-output station is a major terminal for the internal transportation system. Goods unloaded from the containers are placed aboard magnetic transporters for dispatch throughout the facility (see section 8.3 ).

### 8.3 INTERNAL TRANSPORT SYSTEM

8.3.1 Overview: The SMF internal transportation system is designed to carry raw materials, personnel, and finished products within the facility. In the reference design a containerized, magnetic transporter system is used. It should be noted that this system uses passive containers; however, personnel containers can cirry life-support batteries.

Table 8.1 presents a list of the items to be moved to, from, or within the SMF. All of these items mass less than 3 tons, and nearly all of them could each fit in a space $1.5 \times 2.5 \times 16$ meters (some are far smaller). Thus, almost all of these items may be packaged in specialized containers and moved by the magnetic transport system (described in section 8.3.2). Storage areas for the specialized containers are provided in the system to prevent backups and guarantee supply of transporters along the tracks (see fig. 8.3).

Molten metal or alloy cannot easily be packaged for transport in this system. Pipelines (described in section 7.2) provide the necessary movement for molten metal or alloy.

$$
\begin{aligned}
& \text { SHIGINAL PAGE is } \\
& \text { OF POOR QUALITY }
\end{aligned}
$$

TABLE 8.1: ITEMS TO BE MOVED WITHIN THE SMF



Double-headed arrows represent
information going to Routing Control and commands going to
$\rightarrow$ TRANSPORT TRACKS SMF Sections and Cart Storage locations

FIGURE 8.3: INTERNAL TRANSPORT SCHEMATIC

Metal slabs are also too hot to be easily packaged and therefore proceed directly from the caster to the rolling mill. Finally, DC-DC converter radiators, which will not fit in the transportation system, are produced near the input/output station and handled with manipulator arms.

One of the functions of the transportation system is to transfer materials to and from storage areas. There are three types of storage within the reference $S M F$. The first is tulk storage at the input/output station (materials stored in the input/output containers). The second type is within the factories. When a machinu requires small pieces as inputs, an Internal transport cart can hold many sucn pieces and serve as internal storage. The cart is parked on a sidetrack next to the input of the machine, which empties the cart as needed. When emptied, the cart moves away and a full cart replaces it. Similarly, machines which produce small outputs can fill a cart, which moves away when full.

The third type of internal storage is a dedicated storage device; this system is described in section 8.3.3.
8.3.2 Magnetic Transporter System: The magnetically driven transport system shown in Fig. 8.4 carries most SMF inputs and outputs as well as repair and maintenance personnel. Containers designed to carry particular items (i.e. klystrons, solar panel rolls, or repair crews) are supported by a 1.5 meter cublc framework. Two frameworks may be needed to support


FIGURE 8.4: MAGNETIC TRANSPORTER CART


FIGURE 8.5: TRACK FOR MAGNETICALLY
DRIVEN TRANSPORTER: SIDE VIEW

containers longer than 1.5 meters, with pivot clanips between payload and transporters. Such a payload would then behave like a two-bogie railroad car (see Fig. 8.5). Eight tefioncoated skids keep the framework aligned along a fixed set of tracks.

As shown in figs. 8.5 and 8.6, the transporter is propelled along the track by magnetic induction. Four highpermeability plugs are attached to each framework as shown. The plugs are made of supermalloy, a nickel-based materisl with permeability 800,000 at 8000 gauss. Such a material produces a higher magnetic field concentration than a permanent magnet. The transporter is driven by toroidal electromagnets made of supermalloy coies wound with copper or aluminum. The plugs fit loosely into the gap between the ends of the electromagnet, which creates a field of 8000 gauss (if ihe plug is fully inserted), providing energy of 25 joules per pulse. Thus $2 c$ electromagnets are needs. to accelerate a two-ton block from rest to a speed of $1 \mathrm{~m} / \mathrm{sec}$.

The track contains 2-meter-long acceleration/decelerati.n sections near input/output and storage locations Acceleration is produced by a series of closely spaced elec -omagnets, each of which applies force to tre plug within it at the command of a computer. The computer controls the acceleration by varying the current flowing through each eleciromagnet. After acceleration, transporters are allowed to coast while widely spaceत olectromagnets maintain speed.

$$
8.13
$$

## SPECIFICATION SHEET

Machine Nare: Magnetic Transporter Cart
Function of Machine: Transport of materials within the SMF
Mass of Machine: 87 kg
Physical Dimensions: $1.5 \mathrm{~m} \times 1.5 \mathrm{~m} \times 2.1 \mathrm{~m}$
Throughput/Machine (tons/year): ...
Power Requirements (XW/machine): ---

Number of Machines: (depends on detaileddesign')
Number of Operators: 0
Components:
Frame
High Permeability plug
Teflon Skid
Container

## SPECIFICATION SHEET

Machine Name: Transporter Track
Function of Machine: Guide, control and accelerate transporters
Mass of Machine: 166400 kg
Physical Dimensions: $1800 \mathrm{~m} \times 3 \mathrm{~m} \times 2.2 \mathrm{~m}$
Throughput/Machine (tons/year): ...
Power Requirements (KW/machine): 22.8
Number of Machines: 1
Number of Operators: 0
Components:

Track $(800 \mathrm{~m})$	4	4000	0
Magnetic Drivers	1280	30	.01
Busbars	2	45000	0
Routing Control	1	2000	10

8.3.3 Internal Storage Device: The internal storage device is used to maintain a backlog of materials and parts at key points in the facility.

A magnetic iransporter cart stops in front of the machine and a push arm unloads a container into the storage tube. The container is held in place by a spring and by release clips at one end of the tube. The eight tubes hold four containers each for a total storage capacity per device of 32 transporter loads. The internal storage device rotates to provide multiple loading and unloading points.

The number of machines was etermined by planning for a backlog of one day at critical production points. The cost of the machine was determined from materials costs and from costs of similar industrial equipment.


FIGURE 8.7: INTERNAL STORAGE DEVICE

## SPECIFICATION SHEET

Machine Name: Internal Storage Device
Function of Machine: To maintain a backlog of materials ard Mass of Machine: 380 kg
Physical Dimensions: 15 m diameter; 1.6 m thickness
Throughput/Machine (tons/year): -.-
Power Requirements (Kh/machine): 2


### 8.4 CRAWLER SYSTEM

The crawler system performs all routine maintenance and support operations for the Solar Cell Factory (SCF). It delivers slabs, filament magazines, and baffle rolls to the deposition machines; interconnect rolls and kapton tape rolls to the assembly machines; spare panels to the panel insert machines; and it collects the solar array packages at the end of the assembly line. The crawler can, in addition, replace broken machines such as EB guns.

Crawlers move back and forth along tracks running perpendicular to the production strips, and dispense material and parts in a predetermined sequence. The crawlers


FIGURE 8.8: SOLAR CELL FACTORY SECTIONS REQUIRING DIFFERENT CRAWLER TYPES
periodically replenish their supplies, and unload broken EB guns and filaments, at warehouses located between production strips of the SCF. Control of the crawlers is completely automatic, requiring no human supervisors. Individual cramlers are programmed in different ways, depending upon which section of the SCF they serve.

The SCF may be divided into four subsections that have essentially independent support requirements and may be served by a dedicated crawler system (Fig. 8.8). The areas are deposition area, panel alignment area, interconnection and cutting area, and packaging area. The main diffences between different types of crawlers are the loads they carry, their manipulators, their end effectors, and their operating programs.

Each crawler has the same basic frame and drive mechanisms (Figs. 8.9 and 8.10). The frame is triangular in cross-section $5 m \times 3 m \times 7 m$ long except for the crawler serving the packaging section, which is $17 m$ long. Manjpulator arms are mounted on tracks to increase their effective reach. Their 5 m length allows tiem to cover the widest deposition sections. The manipulator end effectors are tailored to the sections where they will be used. Deposition section manipulators, for example, must have end effectors that are capable of handing filament magazines, baffle rolls, slabs, and replacing broken $E B$ guns. The manipulators must, correspondingly, have replaceable end effectors.



FIGURE 8.10: CRAWLER: ENO VIEH

Crawlers travel between two tracks, one above and one below the crawler, and are moved by an electrically driven gear (Fig. 8.9).

### 8.5 POWER PLANT EQUIPMENT

Power for the SMF is produced by a solar array situated outside the production facilities and connected oy a flexible joint. The array is the only part of the facility requiring accurate pointing toward the sun $\left( \pm 1^{\circ}\right)$. The remainder of the factory is shaded by the solar-cell array, thus easing waste heat and thermal cycling problems.

Estimates of power consumption, defined from the specification sheets for various SMF processes, are given in Table 8.2. The total power requirement for the SMF is approximately 240 MW , which, assumirg an array efficiency of $12.5 \%$, equates to a solar cell area of $1.37 \mathrm{~km}^{2}$ (a square 1200 m on a side).

Al' the power provided to the SMF is in DC form, except that which operates the induction furnaces. The furnaces require high $A C$ power at 300 Hz . The $D C$ voltage from the array must be fed to each process at a specific voltage level. This power conditioning may be achicved by either using DC-DC converters or by "tapping" current at appropriate points from the solar array by suitably positioned multiple busbars. The reference $S M F$ design was $D C-D C$ converters positioned along the central structural mast to provide power to the various

IABLE 8.2
POWER USE IN REFERENCE SMF

COMPONEMTS FACTORY	POWER (KW)
Metals, furnaces, and casters	300
Ribbon and sheet operations	1600
Insulated wire production	550
DC-DC converter production	3
Klystron production	40,000
WAVEGUIDE FACTORY	8,900
Waveguide production	
SOLAR CELI FACTORY	186,000
SOlar cell production	300
FACTORY SUPPORT	4,000
LIFE SUPPORT (Og kw/person)	

SMF sections. The $A C$ power for the production furnaces is provided by DC-AC converters.

In case of solar eclipse, or malfunction of the solar array pointing system, power can be produced by emergency fuel cells which feed DC power to the pcwer conditioning system. During primary power failure, these fuel cells produce enough power to avoid damage to equipment and danger to personnel while the production equipment shuts down; to keep essential support services (docking, internal transport, lift support, repair, and attitude control) working until primary porar returns, and to keep the life support systems of the habitation section operating. The fuel cells are designed to supply emergen.y power for up to 30 days. From Table 8.2 it can be seen that factory support equipment requires 300 KW and life support requires $9 \mathrm{KW} / \mathrm{per}$ on. In the case of a power loss the latter figure. ay be cut down to $3 \mathrm{KW} / \mathrm{person}$ with suitable power conservation measures. The total mass of the emergency power source (assuming 440 workers at the SMF) is 21T--using a typical fuel cell mass of $16 \mathrm{~kg} / \mathrm{kw}$.

The fuel cells are actually operated at low output at all times, to keep them in operating condition, and to produce power to handle peak loads (the solar array produces mainly baseioad power). The cells are fueled with lunar oxygen and Earth hydrogen; their water output makes up the water losses in the food and water cycles.

### 8.6 PRODUCTION CONTROL

8.6.1 Control Structure: As described in section 6.6.4, production control within the refarence SMF is exercised at three levels: factory monitoring, factory resources manageernt, and production management.

The lowest level is factory monitoring, which continuously receives information on machine operation and output quality. If product quality is substandard, the factory monitoring sectinn sends commands to the factory to adjust the appropriate equipment settings.

If the substandard output persists, or if a machine breakdown occurs, the factory monitoring section sends commands to the factory to shut down the affected equipment, and sencs commands to the maintenance and repair section to fix the problem. Similarly, the factory monitoring section monitors the need for maintenance of the factory equipment, and sends commands to the maintenance and repair section to do that mairitenance.

In order to perform tirese tasks, equipment monitors both the quality of output, and the operation of circuitry to initiate corrective commands. For example, in the solar cell factory, measurements of deposited film thicknesses, grain size of deposited silicon, dopant concentrations, etc. are made during production to ensure quality of machine outputs. Measurement devices employ a variety of techniques. Additionally, the performance of equipment such as electron
beam guns, peg welders, and contact masks is monitored so tiat a comparison between output quality and machinery status wili allow faults to . 2 isolated. For maximum effectiveness (minimum wastage) quality control is then exercised at each stage of production within the reference SMF.

Equ* ment requirements for the factory cannot be easily evaluated since the machinery required for quality control 15 : to some extent, dependent upon the final prodliction machinery designs. It is clear. 2 wever, that sensors, communications lines, computational facilities, audio and/or video monitoring, and, possibly, teleoperator capabilities will be required. Quality control concepts, applied to the Solar Cell Factory, are discussed in section 7.6.2.

The next level in $S M F$ production control and management is the : actory resources managemert section. This section receives information from several sources. Fy m the factory monitoring section, it receives continuous information on the status of the factory, i.e. which machines are working, which are shut down, which are approaching scheduled maintenance. From the factory itself, the factory resources management section receives information on the contents of internal storage systems. From the input/output station, it receives information on the input and output inventories in the cargo modules.

From all this infurmation, the factory resources management section builds and continuously updates a picture of the 8.27
resources available for production: status of machinery, size and location of material inventories. Based on this picture, this section models and predicts factory throughput. It then optimizes factory operations in the predictive model.

The work of the factory resources management is largely computational, receiving data from sensing equipisent located around the factory.

Inventory control equipment is responsible for the identification of and accounting for parts within the facility. Additional equipment is required to monitor the contents of each of the internal stor: e devices throughout the factory. Inventory control (as applied to the Solar Cell Factory) is discussed in section 8.6.3.

The system employed is comparable to that currently used in factories with automated inventory control. In fact, the SMF system is a good deal simpler than that used in, say, the automobile industry which keeps account of up to $\mathbf{1 5 , 0 0 0}$ different parts at a given time. The particular case of resource management of the Solar Cell Factory is the subject of current work by the stidy group.

The factory resources management section of the SMF includes several personnel to oversee the operations of the complex SMF factories. The large volumes of information required are processed by computers.

The upner level of production control and management is production management. The SMF production manager receives
information from within the SMF and from other sectors of the space industrialization scenario. From the factory resources management section, production management receives updates on the resources available to the SMF. From the Moon and the SPS assembly site, the SMF production manager receives information on shipment schedules fur both expected input shipments and requirea output shipments. These facts are then evaluated, together with long-range planning goals, to determine the nearterm objectives of SMF production. Production management then gives these objectives to the factory resources management section for implementation.

The prodiction manager must receive information about the status of all parts of the factory on request, and, therefore, equipment is for communications, data links, compitation, etc. The actual equipment required is largely dependent on final factery designs.
8.6.2 Quality Control Concepts: Quality control equipment will be needed in the SCF $\ddagger 0$ monitor thicknesses, temperatures, dopant concentrations and machinery health. This section of the Addendum ivill address options available for some of the quality cont:ol equipment.

During the initial part of the solar cell deposition the cell ' $y$ yers will be deposited on a thermal belt designed to provide temperature control for several machine processes. Ref. 20 surveys temperature instrumentation, of which only thermocouples, resistance versus temperature devices (RTD's)
and radiation pyrometers operate in the range of temperatures encountered by the thermal b. . Infrared thermometers operate in the temperature range of concern and are described in Ref. 21, which provides an excellent comparison of thermocouplec •nd infrared thermometers.

The advantages of an IR thermometer over a thermocouple include its quicker response time, virtually infinite life and the fact that it is a non-contact sensor. Compared to IR thermometers the thermocouples require no cooling services and can measure temperatures in inaccessible places. Because it is non-contacting, the $I R$ thermometer seems ideal for a manufacturing process; however, the vapors in the various machines could interfere with the optics of this instrument.

An attractive technique for the analysis of film thickness and in the case of the doped silicon, the composition as well, is the use of X-ray emissions (Ref. 3). X-ray emission involves exciting a thin film with a high-energy source such as X-rays or an electron beam. The film produces a characteristic radiation, the intensity of which is linearly proportional to the thickness for thin films and increases exponentially for thicker films up to a maximum value. The procedure has been demonstrated for multicomponent films. This nondestructive technique, which is highly accurate and requires a short analysis time, is readily applicable to inline process (manufacturing) contro?. The literature indicates that this technique could be very useful for the aluminum
contacts and for the boron doped silicon which is five micrometers in thickness. Ref. 3 is not clear as to whether this method could be used for the entire silicon film which is 50 micrometers thick, or for the silicon dioxide covers which are 50 micrometers and 75 micrometers in thickness.
8.6.3 Inventory: The Solar Cell Factory requires seven different outside inputs for the manufacture of solar cells, in addition to interconnect rolls and zone-refined silicen slabs which are internally manafactured. The seven inputs are aluminum, silicon, dopants (boron and phosphorus), silica, oxygen, and kapton tape. All of these are delivered by crawlers or a routine basis and, with the exceptions of oxygen : $\quad$ :on tape, are in slab form.

For $: .$, input materials, the accounting system is required to keep truck of the inventories in the SCF machines, crawlers, warehouses, and also the Siff central warehouse. Specifically, the system keeps information on the quantity of each indut type and where and when it was produced. Thus, if a defect in material inputs to the production process is found to cause inferior quality cells, the defective slabs can be traced back to the machine that produced them and the problem investigated. The slabs are always handled in special racks after being formed and before being unloaded from the crawlers to prevent vacuum welding and contamination. When the crawlers unload slabs into the deposition machines, the pertinent information about the slabs is relayed to a central accounting computer
along with the time and the machine location. This central computer also keeps track of materials delivered to and sent from the SCF and SMF warehouses. Thus the central computer is aware at any given time of exactly how much of a given input material is in stock or in transit, to or from, the SMF warehouse, the local SCF warehouses, the crawlers, or the SCF machines.

The central accounting computer has data concerning expected support requirements for such articles as EB gun filaments and kapton tape rolls, and unscheduled breakdowns of components and is thus able to allocate its resources in the most efficient manner possible, ensuring that no warehouse is ever understocked. If for some reason a shortage of supplies exists, the accounting computer determines which sections of the SCF are most capable of absorbing a shortage while maintaining adequate levels of production and distributes supplies accordingly.

The computer's method of gathering information on the SCF output (soiar array packages) is necessarily different from that of the inpst materials because the outputs may not be of completely uniform quality like the input materials are. A solar array slightly below average cannot be recycled, so either an entire array must be thrown away or a package of slightly lower efficiency will be accepted and the SPS resized accordingly. Information concerning the quality of a solar array package can be relayed to the SPS assembly site prior
to its arrival so that approoriate measures, if any, can be taken to accommodate the lower quality packages.

The central computer keeps on file all information pertaining to the quality of a solar array package. It receives data from the panel insert zone concerning how many spare panels were inserted and whether any panels are missing from a package. Most importantly, the computer records the results of the panel test done prior to the panel insert zone. The computer will also be aware of deposition thickness and uniformity, doDant concentrations, grain size, interconnect weld quality, taping quality, etc. The above information will be useful for speeding up repairs to failed panels, and for planning array maintenance and renewal strategies.

The SCF deposition and assembly components that can be replaced by the crawler also require an accounting system. winen these components fail, they are replaced by spares stored on the crawler. Vew and refurbished spares are also stored in the SCF warehouses. Comporents are either in operation, in the repair shop, or in a warehouse, or crawler. This repair/replacement system is discussed in more detail in Chapter 9.
8.7 HABITATION

The configuration chosen for the SMF nabitat is illustrated in Fig. 8.11. As in the JSC-GD study, the habitat consists of a number of modules constructed from shuttle external tanks. For every seven modules, six are designated "habitation


FIGURE 8.11: REFERENCE SMF HABITAT
8.34
modules" and one a "core module." The habitation modules are the basic residential modules, each having eleven levels and supporting twenty-one people. The core modules contain dining and some recreational areas, and provide support for as many as 125 people in case of a severe solar flare. More detailed descriptions of these modules are contained in the JSC/GD study.

The ECLSS (Environmental Control and Life Support System) modules are nested between the External Tanks. Additionally, doorways are cut between habitation modules in several places. A small amount of material is used to seal these connections, material which may be salvaged from external tank wastage (such as parts of the $\mathrm{LO}_{2}$ tanks). The two airlock modules are affixed to core modules at both end modules.

The major departure from the General Dynamics' design has been switching from a one-g environment, provided by rotation, to a zero-g environment.

A zero-g habitat was chosen for the SMF for three reasons. First, the Soviet Salyut 6 missions have demonstrated no limit to zero-g fiights up to nearly five months, assuming that a rigorous exercise program is adhered to. Thus a six month tour of duty (set by radiation limits) shoul' be possible in a zero-g habitat. Second, attempting to cycle between a one-g habitat and a zero-g SMF twice daily may cause vestibular problems to some of the crew. Third, this design reduces the shielding requirement by a factor of 2.2. This shielding is 8.35
provided by a stored backlog of input materials for the SMF. The earliest input from the Moon becomes this radiation shielding, and a reduced shielding mass means that only 0.33 months of solid input are required (based on one $10-\mathrm{Gw}$ SPS/year production).

One problem that is intensified by the above design change is heat rejection. However, this may only require an increase in fluid piping, and not a significant change in radiator mass.

Table 8.3 shows the habitation specifications for the reference SMF with a crew of 600 people. As in the JSC/GD study, a crew stay time at the SMF of 6 months total per year was assumed--three months in space followed by three months on the ground up to a personal maximum of one year in space. This was based upon galactic radiation shielding of $210 \mathrm{~g} / \mathrm{cm}^{2}$ of lunar-derived material. The total shielding mass is 3.5 kT . (The mass and power estimated for the SMF habitat are adapted from the JSC/GD P.R. \#4.) The paraphernalia associated with rotation of the tanks (hub modules, radial connection assemblies, etc.) have been eliminated. Also eliminated are the "Central Shaft and Conveyor" assemblies of each residential and core module. Finally, flooring mass/area has been set equal to that for partitiors and walls at $2.5 \mathrm{~kg} / \mathrm{m}^{2}$.

The habitat total mass (not including shielding) comes to 1800 T.

## TABLE 3.3 <br> HABITAT SPECS

Total Earth Launched Mass (Inert)	$1.3 \times 10^{3}$ tons
Habitat Shielding Mass (Lunar Material)	$3.5 \times 10^{3}$ tons
Population	440
Fower Requirement	$4.0 \mathrm{MH}(9 \mathrm{KW} /$ Person)
Waste Heat	3.6 MW
Total Radiator Area	$9.0 \times 10^{3} \mathrm{M}^{2}$
Consumable Requirement	178 tons/year
Emergency Supply	67 tons

8.37

### 8.8 STATION KEEPING EQUIPMEMT

Station-keeping equipment requirements for the SMF are dependent upon the orbit in which the facility is placed. In the study guidelines, no specific orbit was allocated fir the facility, and selection of an orbit is outside the scope of this study. Correspondingly, no specific descriptions of the equipment requirements can be given.

Two alternative attitude controlsystems for the reference SMF are control moment gyros and thrusters. Because of the high moments of inertia of the largely planar SMF, a massive control moment gyro would be required. Additionally, in the reference design, large moment arms for the action of thrusters are available. It would appear then that a thruster system would be the more likely candidate for reference SMF use. The analysis of the system requirements (number of thrusters, fuel requirements, etc.j is, for the reasons given above, beyond the scope of this study.

### 8.9 SMF STRUCTURE

The structure of the SMF (not shown in the figures) is assumed to account for approximately $10 \%(2,000,000 \mathrm{~kg})$ of the overall mass of the facility. The structure is assumed to consist of trusswork, flexible joint for the solar array mounting, radiator support.structure, and actively damped connectors between each of the factory sections. The main structural elemeni is the central mast (see Fig. 8.1) to which
all sections of the facility are attached. In addition, the mast carries the main factory power distribution equipment, and and provides a clear section through which intra-factory transporters can operate. Again, detailed design of the structure requires a better definition of the design loads which, in turn, depend on the orbit of the facility.

## CHAPTER 9

## MAINTENANCE AND REPAIR

## 9.1: GENERAL REMARKS

The maintenance and repair operations for the SMF can be approached by a variety of different strategies, depending on the complexity, location, size, and number of machines being repaired. The SMF has at its disposal human technicians, crawlers, and free-flying hybrid teleoperators (FHT's) for onsite machine maintenance, repair, and/or removal to the repair shop. In the repair shop itself, the SMF may use either repair automatons or human repair crews.

In general, humans service the components factory, and crawlers and FHT's service the solar cell factory. The components factory includes many different machines with little or no duplication. The variety and complexity of the factory, coupled with the lack of duplication of components prohibits servicing by any sort of computer-controlled, automated system. Human repair crews, however, are highly versatile and could ea : iy perform a wide range of sporadic but complex repair tasks.

The solar cell factory poses $\dot{c}$ different design problem. It consists of hundreds of identical deposition and assembly strips, each operating independently from the others. The SCF EE guns also produce a high radiation environment which makes it desirable to minimise human contact with it. A completely automated or teleoperated maintenance/repair system is ideally suited to these circumstances. A crawler system (de-
scribed in Sec. 8.4) performs all routine maintenance and support operations. It is complateiy automated and is capable of performing only routine tasks. The free-flying hybrid teleoperator (FHT) does all unscheduled repair work. It has more sophisticated manipulator and sensor systems than the crawlers, and is designed to completely substitute for human repair crews. lt can operate in a completely auiumated modesur under limited or total human control when excessive complexity or uncertainty is encountered.

## 9.2: REPAIR OPTIONS TRADEOFFS

Similir repair options are encountered in both the SCF and the components factory. Scheduled maintenance is done to avoid disruptive breakdown and subsequent unscheduled repair. The breakdown of a vitai component, such as the deposition belt in the SCF, can cause a major disruption or shutdown $f_{\text {f }}$ part of the solar cell production process. This an be partially avoided by preventive maintenance, which can involve complete replacement of a machine component, use of rotable spares, or on-site inspection and refurbishment.

In some cases, surh as the metals furnaces, it is desirable to periodically replace a component (the furnace casing, in this example) before it breaks or wears out. The furnace casings are therefore periodically remo ed and replaced with new ones. The old casings which are worn out can no: be recycled, so they are discarded.

Preventive maintenance may also be implemented by using 9.2

```
a system of rotable spares. In a rotable spares system, a
number of extra components (such as EB gun filament magazines)
are kept or hand and are periodically used tc replace the com- ponents in the machine on a fixed usage schedule. The nld compon. is then refurbished and returned as a sare.
Some machines (such as the SCF deposition belts) cannot be removed or replaced. Periodic on-site inspection reveals worn pa*ts or other potential problems, which are fixed or replaced, as required.
Scheduled maintenance cannot prevent all breakdowns. A number of combinations of different repair options are pcssible: redundant design, rotable spares with refurbishment at the repairshop, repair on site, and throwaway components.
Redundant machines (such as \(E B\) guns in the deposition sections) allows continued production even after one machine reaks down; the remaining ones take over intil the broken EB gun is replaced.
Repair of \(E B\) guns is done using a rotable spares system. When an EB gun fails, the crawler replaces it with a working spare. The failed gun is then taken to the repairshop. After repair it is returned to one of the crawlers, to ve used as a spare.
When \(a\) failed rachine cannot je removed, it is repaired on-site by either human repair crews or FHT's, depending on the location. However, when machines are repaired on-site,
```

production halts until the renair is completed, unless redundant machines are available (as with the EB guns).

Some machines have components that cannot be repaired after they fail (EB gun filaments, for example). When the filaments burn out; they are replaced with new ones, which are brought up from Earth and the old ones are discarded.

## 9.3: REPAIR SHOP

The repair shop is formed from a cluster of 24 Shuttle External Tanks in a similar configuration to the inabitat. Unlike the habitat, however, the life-support modules have the increased capability to deal with the gaseous prodycts of operations in the workshop. The workshop is separate from the repair shop Decause of the different life support requirements, and in order to prevent workshop accidents from jeopardizing living quarters. Also included in the repair shops are active damping systems for the machinery, racks for spare parts, input/output systems, and emergency systems.

As discussed in Sec. 9.1, the repair of machines in the waveguide and comporent factories is achieved by on-site human labor. In the solar ceil factory a certain class of components (such as EB guns) is capable of being removed for repair and replaced by a serviceable unit. There are three clasees of these plug-in/plug-out modules:

1) Expendible parts wnich are thrown away on failure, such as baffles;
2) Those simple enough to be repaired by automatons, such as EB guns; and
3) Those requiring complex repair or those small in number, requiring human repair, such as sensors.

Within the repair shop there are two types of machinery:

1) Repair Automatons -- these are automatic repair stations each dedicated to the repair of one type of component. Each Automatons has limited diagnostic capability; any problems outside its capabilities are referred to a human repair crewperson. There are 42 different types of automatons in the reference $S M F$ design.
2) Workshop machinery to alloiw the fabrication of parts without haying to order them from Earth.
9.4: FREE-FLYING HYBRID TELEOPERATOR

Much of the onsite repair work on the solar cell factory can be handled by the crawler system, which replaces defective components with operational spares. However, some of the repair jobs are expected to be either out of the reach or beyond the capabilities of the crawler system. Examples of such repairs are fixing thermal belts, radiator systems, array packagers, or the crawlers themselves. It is not cost-effective to equip the crawlers with the extended ability to do these repairs, since they are seldom needed, and that crawler equipment wouid not be used very often. On the other hand, the use of human labor for repairs on the solar cell factory poses a health hazard due to the $x$-rays emitted by the $E B$ guns. The study group therefore proposes a Free-flyir.g Hybrid Teleoperator
(FHT), with the mobility and sophistication to handle almost any repair job at the SMF. The FHT should be able to: propel itself with thrusters to the repair site; insert itself into the structure where it is needed (such as between the upper and lower sections of the thermal belts ; attach itself to a structure, carry tools and spare parts; carry a variety of sensors; navigate; diagnose and repair faults; and communicate with its human supervisors.

A preliminary sketch of such a device is shown in fig. 9.1. The FHT consists of central container holding the onboard computer, propellant tanks, batteries, thrusters, control circuitry, and communications equipment. Attached to this container are communications antennas, tool and end effector racks, spares racks, anchor arms, sensor systems and light sources, and repair manipulators. The FHT's are dispatched from support racks which refuel and recharge the units.

The FHT can move around the factory in three fashions. First, it can use its thrusters to move across open space to a general location; once there, the FH T grabs onto the structure. Second, it can "walk" through the structure, using its guide arms and manipulators. Third, it can attach itself to a crawler; the crawler then takes the $F H T$ to (or near) its destination. The choice of locomotion depends on the cost of fuel, the urgency of the repair, and the availability of the crawlers.


FIGURE 9.1: FREE-FLYING HYBRID
TELEOPERATOR
9.7
uriginal patie is
OF poor guality

For navigation, the $F H T$ relies on a set of transponder beacons in specified locations around the factory, and a map" of the factory in its onboard computer. It locates itself on its map by directional fixes on the beacons. For closequarters navigation (for example, within the factory stracture) the FHT uses some form of electromagnetic vision (e.g. light and camera, radar). At this time, state-of-the-art vision systems can determine the orientation of a two-dimensional structure (such as the integrated circuit pattern on a silicon chip). Increasing this capability to three-dimensional navigation inside a structure would require advancing that level of technology. Current experimental syscems which perform three-dimensional pattern recognition require large computer capacity and long computation time to update the internal map of their immediate surroundings as they travel (Ref. 9.1). This would make such devices much slower in their movements than human beings. However, the computer capacity is expected to be available by 1990. Also, the computation time can be reduced by two factors. First, the use of transsponder beacons can be made more accurate and damage tolera. ty using many beacons, so that the FH T is always near several, and by giving the FHT the ability to selectively ignore defective or displaced beacons. Second, the FHT's computer can hold in memory detailed blueprints of all the locations in the factory. The ability to use comparison techniques in pattern recognition, rather than a continuously updatedmap
of the surroundings, can reduce the necessary computations. Even with these simplificatigns, however, the current ability of computers to deal with location in three-dimensional space is insufficient to the FHT's needs.

Thus the FHT could use several navigation systems, depending on its mode of travel. When it is travelling long distances, such as "above" and across the factory, it uses the beacon network. To latch onto and walk through the structure, the FH T uses vision and pattern recognition by comparison of its actual surroundings with its stored factory blueprints. When the FH T reaches the area to be repaired, where components can be distorted or broken (and therefore no longer match the blueprints), the FHT switches to the continuous updating of an internal map of the surroundings. Any of these modes of navigation could $:^{*} ; 0$ be performed by human remote control, and in fact the continuous-update mode of navigation may be done faster and more accurately by a human operator.

Current computer vision systems can benefit greatly from control over the angle of illumination of their surroundings, because variations in lighting angles change the perceived view of the surroundings, and thus require more sophisticated pattern recognition software (Ref. 9.l). Since the SMF is shadowed by its solar array, the solar illumination will not be a problem. The SMF could be illuminated by fixed sources throughout the structure, but these sources would be seldom
used. The preferred system is to mount the illumination sources on the FH , so that the sensors perceive their surroundings illuminated "straight on". It should be noted that these illumination sources need not be human-visual-range lights, but could use any kind of electromagnetic radiation. Even when the FH T is under human remote control, the visual display provided to the operator would be computer-generated on a screen; such a system can operate from any sensor input (e.g. radar).

The FHT relies on a variety of sensory feedback mechanisms to acquire a complete picture of its environment. These include force, torque, moment, proximity, touch, and visual sensors.

Force and torque sensors were developed with early adaptive control systems (Ref. 9.3). These sensors were found to be inadequate for all but the most basic assembly operations that used adaptive control, because they relied on tolerances greater than most factory machining tolerances. These systems c•uld not adapt to slightly off-design parts and small assembly misalignment problems.

Moment sensors and compliant wrists were developed during peg-in-hole investigations (Ref. 9.4), and have proved to be highly effective. Touch sensors provide pressure, contour, and force information associated with manipulator end effectors. They are usually smaller and more sensitive than the force sensors, but still require futher development.

Proximity sensors are non-contact, optical sensors that detect the presence or absence of an object within a specified range of the sensor surface. Proximity sensors have been found extremely useful in controlling large-scale movements of manipulator arms, and specifically is stopping the arm's movement before contacting and possibly damaging the manipulator. In this respect they are superior to mechanical limit switches, They can also be used for detecting object contours and so can be used as an aid in positioning the manipulator hand in a certain orientation with respect to an object, such as above the highest point.

Visual sensors are the most sophisticated and have the most versatility of all the FHT sensors. Visual input is used as a basis for all repair operations. The FHT requires visual analysis to:

1) provide the human operator with a view of the operating environment
2) determine its location and attitude within the factory
$\because$ : fotermine what movements and manipulator motions dre required to reach a given location
A: compare its surroundings with blueprints on file in the SCF computer in order to determine what, if any, repairs should be undertaken
3) correct the motions of manipulator arms to avoid collision or contact with obstructions
4) update its internal map of the C CF, in case of damage or other discrepancies in its environment

Current visual analysis technology is either inexact or requires large amounts of computing power (Ref. 9.5). Many early vision systems could recognize and manipulate simple geometric objects by analyzing their edges and corners. The difficulty of finding mathematical solutions made the analysis of more complex objects pronibitive; however, research has shown that some prior knowledge of the object and its surroundings greatly aids analysis. For example, information about an object can be extracted from the shadows it casts on walls, floors and other objects. The shading on an object also gives information about surface properties. Interestingly, relative depths can be determined more easily by analyzing the shading on round or curved objects than by using a range finding device or stereoscopic vision. The repair procedure can benefit from having several views of the operation from different angles. Therefore some sensors and fllumination sources should be mounted either on the manipulator arms or on separate arms of their own. The development of low-mass sensors (such as the current solid-state cameras) can alleviate moment-of-inertia problems in such arms. In addition, the system should have sensors and illumination sources mounted on the body of the FH i itself, to provide an overall, "fixed" view of the situation.

Machine systems are now able to assemble relatively complex items (for example, automotive distributors) both from
drawings (Ref. 9.6) or from video images (Ref. 9.7). This type of assembly requires detailed programs, tailored to spe. cific assembly operations. The use of generalized descriptions of assembly operations would be desirable to direct assembly/disassembly work; however, this is not presently possible. The operation must be highly defined because the machine has trouble with many small details, e.g. where to put a bolt after removing it.

The study group has identified five useful command modes for the FH T. It is the mixture of human and automated control in these modes which gives the teleoperator its "hybrif" quality. These modes are: remote manual, automated robot, single step, remote override, and task learning.

In remote manual (RM) mode, a human operator has direct control of the FHT. The operator must respond personally to all sensory feedback (e.g. proximity, force, torque, video, etc). However, the commands from the operator are relayed through the FHT computer, which verifies that these commands will not put unacceptable stresses on the FH components. Because of the difficulty in handing the manipulator arm's numerous degrees of freedom, this mode is not as rapid as the automated robot or singie step modes for programmed motions. However, because the sensory analysis and motion commands are handled by a human being, this mode is expected to be the fastest in dealing with unexpected situations.

In the automated robot (AR) mode, the FHT is entirely on internal computer control. The FHT computer analyses the sensory input and updates the situation status in its memory (including a three-dimensional map of its surroundings). The FHT navigates, inspects, diagnoses, and repairs by using either preprogrammed routines, or by assessing the situation and deciding on a course of action. The $A R$ mode bases its operation on the FHT's ability to do a certain amunt of indepentont and abstract thinking. In this completely automated mode of operation, the FHT can deal with unexpected or uncertain circumstances without the benefit of a human supervisor. When performing repair operations, it must also be able to make many minor judgements, such as what to do with its manipulator arms, when to move from one repair step to the next, : $r$ where to put a piece after it has been removed from the device being repaired.

The FHT wili be required to perform a wide variety of repair operations on many different components, where the operations have many tasks in common, e.g. bolting, cutting, welding. The physical layouts and repair sequences for these components, though, are quite different. Most assembly programs involve motion-by-motion types of commands expressed in fractions of millimeters that are tailored to the individual machines. Writing these programs involves much engineering design time and expertise and is practical when an operation 9.14
must be repeated thousands of times. This is not the case with the FH , where a given repair operation might only be used two or three times. The FHT must theref re be able to take an abstract definition of a repair task, a definition that has no dimensions, forces, etc., interpret tie situation, and then execute the task. When the FHT has interpreted a task, it stores the resulting program with the learned tasks, so that if the same "repair sequence" is encountered again, the FHT computer will not have to repeat the interpretation process, but can immediately execute the repairs.
"Repair sequences" are sequences of defined repair tasks, written in manner similar to automotive repair manuals. The FHT computer reads the sequence of operations ; 1 then plans a strategy for implementing them. Blueprints of the SCF and all of its components are used by the computer in relating the commands in the "repair sequence" to the FHT's visual input. These blueprints are also part of the FHT's internal map of the SCF. As mentioned above, the repair sequence process involves many independent decisions. Systems of this complexity do not currently exist.

Because this mode requires that the $F H T$ be able to respond to uncertain conditions, it qualifies as a 'robotic' operations mode. The $A R$ mode requires considerable computer capability, which may be difficult to include antirely onboard the FHT. If this is ihe case, the FHT can relay its sensory inputs and
preliminary evaluations to a larger, more sophisticated computer, via its telemetry links. The issue of how much onboard capability is desirable is difficult to answer at ihis time, because it requires estimates of computer and telemetry capabilities ten years from now, and because it depends on the relative costs of individual computers in th. FHr's versus fewer large, time-shared computers. More generally, there is a level of uncertainty beyond which assessing the situation ty computer becomes prohibitively expensive, and it becomes cheaper to request human assistance. Thus the $A R$ mode is valuable up to a certain le: 1 cf complexity; what that level will be in 1990 is difficult to predict.

In the single step (.) mode, the FHT performs pre-programmed instructions (stored in its memory) one at a time. The commands to execute the individual instructions are given by a human operator. This allows the human operator to do the sitiation updates and command decisions, which is faster than comPuter updates and decisions. And the use of preprogrammed instructions maximizes the speed of the individual operations and frees the operator to do other tasks while the FHT performs a task. One operator could even control several fHT's, feeding cormands to each in turn.

The remote override ( $R 0$ ) mode is analogous to the automated robot mode, but includes the option of an interrupt order from a human operator. Thus the FHT can perform a series of
tasks automatically, under the passive supervision of a human operator; when the FHT encounters an unexpected problem, or when a change in the operations sequence is desired, the human can override the FHT 's onbuard control and manually take over the teleof srator. Both this mode and the single step can be used to check the validity of the FHT's onboard programming, by watching the results of the automated sequences.

In the task learning (TL) mode, the functions of the FHT are controlled by the human operator, but the sequence of operations is stored into the memory of the FHT , for later repetition. Thus the human operator teaches the FHT one or more operations, by "walking" the teleoperator through the required task(s). The usefulness of this mode can be consicerably increased if the sequence being taught can be optimized either by the FHT's onboard computer or by a larger computer, via a telemetry link. Such optimization could include eliminating wasted motions, maximizing the speed and accuracy of motions, and choosing fuel and electricity-efficient methods of operation. In any case, the $T L$ mode includes provisions for editing and modification of the new sequence by the human operator.

In those modes involving a human operator, a number of direct command hardware options are possible First, the operator can type in coded instr: ons, much as a computer is controlied today. Second, certain often-used sequences could be hardwired, anr commanded by pushing buttons. Third, the video 9.17
display could be on an electronic boart, and a light pen could be used to indicate locations. For example, the operator could push the "travel to" button and indicate a spot on the visual display from the FHT's sensors; or the operator could request a listing of function codes on the display, and point theilight pen at the desired operation. Fourth, commands to the FHT could be given by voice; the FHT computer could answer by voice also. In this case, it is recommended that the computer repeat a given command back to the operator (either by video or audio) to verify that the command is properly understood. Talking computer'; and voice actuated devices exist today; such a system would require increase in the voice-actuation vocabulary, better discrimination of voices and words by the computer, and the development of conversational logic software so that the computer can request clarification of commands. Fifth, the human operator can use one or more joysticks to 'fly'the FHT. These joysticks could control travel under thrust, or (with sophisticated computer interpretation) coulic control the FHT's walk through the factory structure. Sixtn, the manipulators can be controlled by master arms handled by the operator. These could include force and torque feedback, and even tactile sense. One drawback to conventional master-slave manipulator system: is that during operation the operator's hands are not avallable to operate other functions. An integrated control system, using hands,
feet, eyes, and voice, could be developed to give the human operator a high degree of control over the FHT.

CHAPTER 10
LINE ITEM COSTIMg
While the preceeding chapters have dealt with the engineering aspects of the concept of extraterrestriai material utilization, it is important to also begin to quantify the economic impact of such a project. Using the baseline case of manufacturing one solar power satellite per year, this chapter deals with the cost estimation of the point design SMF.

The necessary products for the manufacture of an SPS are listed in detail in Chap. 3. The machines required for the production of these components are detailed in Chap. 7. Each machine is broken down further into its major subsystems, or components. The SMF can therefore be analyzed on three levels: system-wide costs (such as cargo transport costs), machine costs (for example, operating expendables procurement), and component costs (such as initial transportation). By applying the costing procedure selectively on all three levels, cost estimations can be ma. more accurately with minimum increase in complexity.

The system-wide, or global, parameters are listed in Table 10.1. It is assumed in ths study that all of these parameters are constant throughout the system, neglecting such factors as different wage scales between job classifications. The pay scale is assumed to be $\$ 100,000$ per person year. Since it is desirable to keep the SMF operating on an around-the-clock 10.1

TABLE 10.1: SMF GLOBAL PARAMETERS

W	Labor wage	\$/person-hr
${ }^{T}$	Cargo tranzport cost	\$/kg
$T_{p}$	Personnel transport cost	\$/kg
F	Emergency repair fraction	---
U	Crew training cost	\$/person
$M_{c}$	Crew mass	kg/person
R	Rotation rate	times/year
L	Terrestrial life support usage	kg/crew-day
$M_{s}$	SmF structure mass	kg
$P_{s}$	SMF structure power	kW
$C_{s}$	SMF structure cost	\$/kg
$E_{s}$	SMF structure expendables	$\mathrm{kg} / \mathrm{yr}$
G	Powerplarit cost	\$/kW
$\propto$	Specific power density	$\mathrm{kg} / \mathrm{kH}$
K	Number of production machine types	---
H	SMF production period	hrs/yr
S	Support overhead factor	---
A	Assembly productivity	kg/crew-hr
$r$	Yearly discount rate	---
$Y$	Program lifetime	yrs
$\mathrm{M}_{\mathrm{H}}$	Habitat mass	kg/person
$\mathrm{P}_{\mathrm{H}}$	Habitat power	kW/person
$\mathrm{C}_{\mathrm{H}}$	Habitat procurement cost	\$/kg
$\mathrm{D}_{\mathrm{H}}$	Habitat R \& D cost	\$M

10.2
basis, three shifts are necessary. This gives a working week of 55 hours/person (for example, 8 hours/day, 7 days a week). The wage, $H$, is therefore $\$ 34.34$ per hour.

The transportation costs are split between cargo and personnel, since cargo will be carried in low-thrust, long trip time orbit-to-orbit vehicles, while crews must necessarily be transported in faster, high-thrust chemical-powered spacecraft. In addition, some high-demand materials (such as perishable foodsiuffs or repair parts not in the SMF inventory) must also travel on the crew transports, at a cost penalty. The values of $T_{c}$ and $T_{p}$ are a function of SMF location and vehicle details, and the complete analysis of these values are tierefore outside the scope of this study. These costs are estimated from Ref.lo.l. Initial estimates, based on $10 \%$ of the SPS being of earth origin, indicate a yearly mass launched from earth to the SMF on the order of $15,000 \mathrm{Mg}$. This yields earth launch costs of $\$ 100 / \mathrm{kg}$ for cargo, and $\$ 200 / \mathrm{kg}$ for personnel. Cargo is assumed to be transpcrted in space by tugs employing electromagnetic propulsion and lunar-derived propellants, and therefore incurs no further significant transport costs. However, personnel must be transported in high-thrust, chemically propelled vehicles, in order to keep trip times down to a reasonable level. It is assumed that this transporter will use an oxygen/hydrogen engine (Isp=470 se:), with oniy hydrogen brought from earth. The $S M F$ is aysumed to be in an orbit with
a velocity interval from low earth orbit equivalent to geostationary, which gives a $\Delta v=4400 \mathrm{~m} / \mathrm{sec}$. The personnel transport makes a round trip, with crew carried each way, so the total $\Delta v=8800 \mathrm{~m} / \mathrm{sec}$. The mass ratio (kg of inert mass per kg vehicle gross mass) for the interorbital personnel shuttle is therefore

$$
\begin{equation*}
r=\exp \left[-\frac{8800 \mathrm{~m} / \mathrm{s}}{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(470 \mathrm{~s})}\right]=.148 \tag{1}
\end{equation*}
$$

Assuming a vehicle inert mass fraction of .1 , the propellant per payload ratio for this vehicle is 17.75. However, with a typical $\mathrm{O}_{2} / \mathrm{H}_{2}$ mass mixture ratio of 6 , only $1 / 7$ of the propellants mass needs to be brought from earth. This means that 2.5 kg of hydrogen is necessary for each kg of personnel carried. The total personnel transport costs are therefore increased by the cargo costs of the hydrogen to $\$ 450 / \mathrm{kg}$.

As mentioned earlier, some repair parts will be needed in order to maintain production, but will not be in stock in the SMF warehouse. Rather than shutting down a critical machine until a cargo transport arrives, which could be a matter of weeks due to the nature of low-thrust trajectories, it will be necessary to ship these critical repair parts on personnel transports, thus increasing their costs. This
emergency repair fraction, $F$, is taken to be. .l.
A typical crew training cost, $U$, is on the order of $\$ 100,000 / p e r s o n$, and that number was assumed in this study. Crew transport mass (including some personal effects) is estimated to be $100 \mathrm{~kg} / \mathrm{per}$ on, and the total crew assumed to be cycled back to earth every 90 days, or $R=4$ rotations per year. This rotation rate is based on allowable physical degradation in the zero-g environment of the SMF (Ref. 10.2), as well as allowable radiation limits in free space in an unshielded habitat (Ref. 10.3). Life support con. umables are taken as $L=.83 \mathrm{~kg} /$ person/day, based on lunar oxygen and terrestrial nitrogen atmosphere, shipping only hydrogen to be mixed wit lunar oxygen to make water, and freeze-dried food (Ref. 10.4).

The structure of the SMF is characterized by its mass (kg), power $(k W)$, procurement $\cos t(s / k g)$, and use of expendables from earth (kg/yr). These estimates were de u from the SMF layouts in the preceeding chapters. These values were taken to be $M_{s}=2000 \mathrm{Mg}, P_{s}=1000 \mathrm{~kW}, C_{s}=\$ 25 / \mathrm{kg}$, and $E_{S}=0 \mathrm{~kg} / \mathrm{yr}$, for this case, respectively.

Space power represents an interesting change from the normal earth design environment. Energy intensive activities on earth are generally characterized by high recurring costs, due mainly to the use of fuels in energy production. In space, however, photovoltaics give rise to large initial
costs, with no appreciable recurring costs thereafter. Power therefore shows up as a nonrecurring, rather than recurring, cost. The elements of this cost are the procurement price of the generating capacity ( $G, \$ / k W$ ), and the specific power density ( $\alpha, \mathrm{kg} / \mathrm{kW}$ ), which relates to transport costs. From current estimates of future space-rated solar cells (but not in SPS-sized quantities), these values might be expected to be $\$ 2000 / \mathrm{kW}$ and $10 \mathrm{~kg} / \mathrm{kW}$ (Ref. 10.2). Since the (cargo) transport rate is $\$ 100 / \mathrm{kg}$, the total power cost for the $S M F$ is $\$ 2000+\$ 100 \times 10$, or $\$ 3000 / \mathrm{kW}$.
$K$ is the number of different types of machines in the SMF: in the point design, 60 . H is the number of scheduled operating hours per year, or 8766 . The support overhead factor is the total on-site ratio of worker/production workers, and ectimated from typical manufacturing projects to be about 2 or $100 \%$ overhead. The SMF is initially assembled from prefabricated components; the productivity of the assembly workers, A, is estimated based on MIT Space Systems Lab experience in neutral buoyancy simulations of EVA assembly as $300 \mathrm{~kg} / \mathrm{crew}-\mathrm{hr}$ (Ref. 10.5). Discount rate, $r$, is taken as its standard value of $11(10 \%$ yearly), and the program lifetime $Y$ was set as per the statement of work to 20 years.

With the specification of these global parameters, the accounting system must proceed into the machine level of costing. Each machine type has five parameters of interest: operating labor, earth expendables usage and cost, number of
machines of this type, and number of different types of components. Seven parameters are likewise required to specify the costs of a component: the number of units of that type, the mass and power of an individual unit, duty cycle, sarly repair parts, and codes relating the technology level and repair technique for the component. These variables are summarized in Table 10.2 for machine parameters, and Table 10.3 for component parameters.

TABLE 10.2: SMF MACHINE PARAMETERS

$1_{j}$	operating labor requirement	crew	$\mathrm{hr} / \mathrm{op}$
$\mathrm{e}_{j}$	earth expendables	$\mathrm{kg} / \mathrm{hr}$	
$x_{j}$	procurement of earth expendables	$\$ / \mathrm{kg}$	
$n_{j}$	number of units	$\ldots$	
$k_{j}$	number of component types	$\ldots$	
$b_{j}$	process $R \& D$ cost	$\$$	

TABLE 10.3: SMF COMPONE:TT PARAMETERS

$n_{i j}$	number of units	---
$m_{i j}$	mass of individual unit	kg
$p_{i j}$	power requirement	kW
$c_{i j}$	procurement cost	\$
${ }^{\text {d }}$ ij	duty cycle	---
$1_{i j}$	repair labor	crew hr/nonop hr
$r_{i j}$	replacement parts	$\mathrm{kg} / \mathrm{yr}$
$b_{i j}$	$R \& 0 \cos t$	\$

Perkaps the greatest problem in cost estimatior is the estimation of resedrch and development and procurement costs.
10.7

The study group attempted to categorize all of these costs as closely as possible, by calling manufacturers of similar devices wherever possible, and extrapolating present technology to the 1990 technology cutoff date. The cost data thus arrived at was felt to be fairly accurate, but many of the components offered no adequate earth analogue for this technique to be applicable. The estimates for these component types was based, in typical aerospace fashion, on the technology level and component mass. However, it was felt that one single costing rationale should be applied equally throughout. Since the +echnology/mass approach proved more conservative, that approach was the one chosen.

Each component was specified as being either low, medium, high, or ultra-high technology level. For example, passive structure would be low technology, electric motors medium, electron beam guns high, and autonomous computer systems ultra-high. Tabie 10.4 shows the assumptions used for estimating research and development and procurement costs for each of these levels, in terms of $\$ / \mathrm{kg}$.

TABLE 10.4: COSTING BASELINE

	R\&D	Procurement
Low	500	50
Medium	5000	500
High	20000	2000
Ultra-high	100000	10000

The other factor which was difficult to quantify was component and machine reliability. Again, consultations with manufacturers and users of earth analogues provided much of the data used. Since this seemed to be a critical item, however, the costing program developed was designed to let the component duty cycles be the independent variabie in a variation of parameters study.

Machine duty cycles were calculated on a probabilistic basis from the futy cycles of its components. The probability that component in machine $j$ will fail is

$$
\begin{equation*}
P\left\langle\text { comp }_{i j} a_{i 1}\right\rangle=\prod_{k=1}^{n_{i j}}\left(1-d_{i j}\right)=\left(1-d_{i j}\right)^{n_{i j}} \tag{2}
\end{equation*}
$$

Using this expression, the probability that the machine will be operating is the product of the protabilities that its component parts will be operating, or

$$
\begin{equation*}
d_{j}=P\left\langle\text { mach }_{j} \text { op }\right\rangle=\prod_{i=1}^{k_{j}}\left[1-\left(1-d_{i j}\right)^{n_{i j}}\right] \tag{3}
\end{equation*}
$$

This expression assumes that a single failure of any component will disable the entire ma hine. It was assumed that in the instance of multifie units of a single component type, the system would te doubly redundant: that is, the failure of two units of a sirgle component would not affect the machine,
but three failures would disable it. As implemented in the computer algorithm, therefore, $\boldsymbol{n}_{\mathbf{i j}}$ in equation (3) was either 3 or the number of units of the component type, whichever was least.

The above analysis assumes the machines are individual units, and that the failure of one does not affect the production of the uostream or downstrear units. The design of the baseine SMF, particularly in the components factory, was based on this approacli, and parts transport systems were designed to enable cross-feeding of products between upstream and downstreammachines. However, this is not true in the solar cell factory, since the vapor deposition processes depend on successive depositions on continuously moving strip. If one of the direct vaporization machines fails, for example, there is no way for the upstream products (correctly deposited) tc byfass t'e nonoperating machine on its own strip. Rather than run through nonfunctional solar cells, the entire strip, and all machinery on $i t$, would be shit down until the malfunctioning machine is repaired. There is a seriec of 14 machines which are critical to strip production, and the number of strips is sized by the produci of the duty cycles of these machines.

The question of machine reliability brings up the associated problem of machine repair. This impacts on the costing in two ways: costs associated with repair devices, and labor
costs for human intervention in the repair process. Tible 10.5 lists the five levels of repair available in the SMF.

TABLE 10.5: REPAIR OPTIONS

1.	Teleoperator repair on-site
2.	Crawler replacement with automated repair
3.	Crawler replacement of expendable parts
4.	Crawler repiacement with human repair
5.	Human repair on-site

The first four apply only to the solar cell factory, and the fifth (direct human repair) is use Gout the rest of the SMF. This dichotomy is due to $t$. $n$ sition process used throughout the solar cell ifctory. irge number of electron beam guns are continually $u$ atating in this area, and the region is too hot (both thermally and in terms of radiation) for a human to approach. For this reason, either teleoperators (repair option l) or crawlers are used to make repairs to the operating machinery. The decision breakdown between the of tions is a function of the individua! component. Each component of each machine design was assumed to be a possible failure. If the component was small enough to be unplugged and replaced as a module, it was assumed that the crawler would ie used for this task. The failed component module would then either repaired by an atomatic repair device (option 2), thrown out (option 3), or repaired by a human being (option 4). On the other hand, if the component was too large or entrenched 10.11
to be replaced by the crawler, the free-flying hybrid teleoperator (option 1) wuld be usea to repair it on-site. Different levels of human supervision would be required for each of these options; the yalues of these levels (in terms of crew hr/repair $n r$ ) was left as a program variable.

As mentioned previously, the entire factory (except for the soidr cell production area) was assumed to be directly repaired by humans. This was due to the different levels of production in the different secticns. The large solar cell productior, several orders of magnitude beyond current total yearl! pruduction. 'quires a large number of strips and machin $s$, and therture lends itsclf to automated repair. The components factory, on the other hand, has an output flow sfveral orders :f magnitude belnis that of a comparable plant on earth; automatic repair is probably not cost effective whin there are only a few samples of each machine type. Although some studies indicate that the teleoperator has excess capability which mighi prove useful in the comporents factory, it was assumed that it would remain within the solar cell factory as dedicated unit.

The entire question of autcrated repair, teleoperator arid crawler capabilities, and machine interdependence within the solar cell factory led to the creation of a specialized program, SCFCOST, dziailed in the Appendix. This program allows a more detalled nalvsis of the intcractions of reli..jility
and repair in the solar cell factory, at the price of increased complexity in program operation. Many of the capabilities of this program go beyond the scope of this study; its use in this report was limited to analysis of necessary characteristics of the teleoperator, crawlers, and automated repair equipment.

Ten direct co ts can be applied to each machine, calculated from the quantities already specified. The costs are listed in Table 10.6; the expressions for each are listed in Table 10.7. The derivation of each is obvious from the definitions of the variables in Tables 10.1-10.3, and will not be further explained here.

TABLE 10.6: MACHINE COST COMPONENTS

```
Non-recurring:
 C1 Research and Development
 C}\mp@subsup{\mp@code{2}}{2}{Procurement
 C3 Transportation
 C4 Power
Recurring:
 C Operating labor
 C}\mp@subsup{C}{6}{}\mathrm{ Expendables procurement
 C7 Expendables transportation
 C8 Repair labor
 Cg Repair parts procurement
 C10 Repair parts transportation.
```

MACHINE DIRECT COST EQUATIONS


It should be noted, however, that the por $\operatorname{se}$ cost $\left(C_{4}\right)$ is multiplied by the duty cycle of the machine. This is due to the fact that a nonooerating machine does not consume any power. Therefore, although the number of a machine type might have to increase if the duty cycle decreases, in order to maintain a current level of prafuction, the power demand does not increase, as it is tied to output, and not total number of machines. The details of the line item costing program, SMFCOST, are in the Appendix.

After the direct costs for each machine are found, the program finds the subtotals and totals for mass, power, and labor. The indirect costs are then calculated. The indirect nonrecurring costs consist of structure procurement, transportatior, and power costs; SMF assembly costs; and habitat
 indirect recurring costs include SMF stristure expendables costs, wages of the support crew, and traininy, transport, and consumables costs for the entire crew. The a:tual equetions used in caiculating these quantities are quite straight-forward, and can be found in the program listing in the Appendix.

The line item costing computer prosram produces a detailed listing of inputs, and accounting of costs. The nonrecurring costs, broken down into cost e'-ment and listed on a machine by machine basis, are presented in Table 10.8. The recurring costs, on the same basis, are detailed in Tabli 10.9. The summary table for the baseline case is shown in Table ? 0.10 .

TABLE 10.8: NONRECURRING COSTS

	$\underset{R}{9} \underset{\mathcal{E}}{ }$	NCNRECURIING CCSTS EFOCUREMENT	\$\$\$5355s transioht	POHER	TOTALS
THERYAL BELT	39250000 。	403567616.	140979984.	29431488.	572285440.
dV OP Al EEAR CONTACT	11853224.	40663088.	4325689.	4.589564.	58048944.
DV OP SI AND P-DOEANT	29413312.	483501568.	68170016.	133704560.	673310976.
pulse recsystalilzaticn	100680192.	11522491.	1172526.	2660035.	115080704.
SGAN RECEYSIALlizaticn	100380152.	6311043.	640527.	886923.	107696720.
n-dopant imflantaticn	10500000.	12350027.	1329999.	2582997.	25734432 .
AHMEAL	10380199.	6311843.	640527.	590546.	17400368.
CV OP AL PRCNT CONTACT	22813216.	333457408.	36475872.	7703553.	372635648.
gECAT CCNThCT SIMIERING	10380199.	6311843.	640527.	295641.	17105456.
CELL CPOSSCut	10405000.	5577291.	507860.	1839468.	17946064.
CELl Intepccanecticn	20745488.	10007 /9.	1606630.	2278658.	34505216.
DV SIO2 OPTICAL CCCVER	132740810.	845030912.	185912672.	169908160.	! 256077820 .
DV Of Sloz Substiate	33740016.	599330364.	127089696.	114727056.	820269824.
EAMEL ALIGN E INS:AT	21820495.	34692384.	7756555.	10532290.	71610080.
PanEl Intrlichinecticn	107705co.	11150460.	1739630.	5218864.	27910272.
Loncituuinal cut	12100000.	5!97291.	507460.	1839468.	17946064.
kapton tape aprif	200410 t .	131546.	40658.	627288.	20827016.
Agray seg. gold \& pack	10147750.	175424.	04455.	280417.	10920045.
teleogurator	107060c0n.	17400000.	270000.	1069 ?	204776912.
CRAHIER Sy Stem	127750000.	130083104.	24516000.	50.4475.	288373760.
ZONE REFINEA	1349674813.	83391736.	13.220331.	537930 2.	285379584.
Mask Clefidup device	100294592.	596196.	177500.	1081916.	102550576.
cu of insehconnects	22125504.	12076095.	1377199.	5357177.	41735936.
LIOUID AI PIPELINE	200674813.	229000.	45800.	840.	20343104.
IRCN PIFELISE	20107488.	37250.	7450.	6.	20152176.
al alloying funnace	$584 C O C 00$.	2520000.	364500.	9235394.	70519888.
IRCN ALLCYING puriace	58400000.	840060.	121500.	3078464.	62439952.
CCNTJNUOUS CASTER	23054592.	614000.	178000.	446925.	24293904.
al Slas cutaer	11000000.	200cco.	10000.	296911.	11506919.
al die caster	105250000.	17524992.	3550000.	676268.	127001248.

TABLE 10.8 (Continued)

	ก 6 [	PROCUEEMENT	transport	Poura	tctals
PE UIE CASTER	35524992.	1552500.	315000.	66951.	37459424.
dian iformer cobe caster	75250500.	5525000.	1150000.	323433.	82248416.
golliag Mill	158050060.	1480500.	18729 O0,	991824.	192566800.
DSD TEIM/WELD/ROLL WISD	139:C000.	27454960.	168124800.	395422.	209384368.
	1046000.	78000.	8400.	122022.	10668422 .
aItera $=15 \mathrm{Cla}$	$4{ }^{\text {cacisess. }}$	3545936.	702d3co.	645248.	56620128.
fibica taramea	10300000.	3.)200.	$36 C 0$.	11935.	10344934.
sthiator	23000600.	1000000.	20001000.	148500.	23148496.
forit nollep	21.30050.	103600.	33966.	100063.	22147728.
KL:S̃:CS l.AD. ASSEYELY	20406000.	$\angle 88.840$.	445200.	1942292.	25752320.
DC-DC CCUY. FHOJJCER	$36 C 80=60$.	$20,30002$.	400000.	7351.	32407344.
ItSUlasicn WInder	1250000 .	2 conove .	400500.	45600.	14945600.
glass figer grotucer	13252750.	2c954736.	16346 co .	1545516.	37396784.
cc ccify. had. asslmbly	21734352.	$372501 \%$.	56500.	148485.	22312464.
kLYSTEON ELA:d	1624559540.	152500000.	$3050000^{\circ}$.	95999968.	1903999490.
glass fgaying pacilitx	534249472.	113574992.	22794992.	20485968.	691504896.
poamer class cutter	J8601992.	2861509.	589000.	64840.	42207312.
SHEET Cutier e slctter	100184992.	224036992.	11238000.	858566.	336318208.
PCAMED GLASS StMOOTHER	10:2500.215.	48374992.	2475000.	231637.	153331616.
waveguide dy cpal	13946125.	2911149.	280800.	792963.	17924016.
vaveguicf packager	1300500.	1362493.	2595000.	38209.	17050704.
waveguide assemuler	100674992.	306579712.	19428000.	1853276.	508535552.
peisctinel docking mech.	15060000.	2000000.	400000.	11880.	17411872.
pfessurizev zuanius	OCOCOOCO.	3 Ccos 000.	E000000.	15444.	96015440.
catco ducking meeh.	31000 cos .	3400000.	440000.	2398.	34242384.
LOAD-UALOAE Masizulatoz	19 COOCCO .	56000000.	2800006.	124146.	248924144.
magnetic tenasecrter	50210000.	6187676.	3406 cco .		59803664.
Tansforteh thack	77150000.	18023248.	16640000.	67716.	1i1880960.
Interyal storage cevice	11900000.	2360000. 84060000.	472000. 840000.	47045.	14779044.
bepaib autchatuns	120000000.	84060000.	840000.	504000.	205343584.
torals	5045313540.	4300349440.	944832512.	697467904.	10732580900.

10.18

	OPRAATING   lagct	$\begin{aligned} \text { EXP } \\ \text { Pyocumerent } \end{aligned}$	3Lts   than siukt	LABOR	$\begin{aligned} & \text { PEPAIE } \\ & \text { PHOCUAEMENS } \end{aligned}$	TAAMSPOET	zetals
THEFAAS DEL：	0.	232476.	1162179.	100101.	20118169．	959－148．	28444000．
dr of al heak ccatact	0.	116354.	1163541.	55416.	203？155．	2919H4，	1．1585．
ct OP SI A C p－coran：	0.	116471.	1164135.	591：57．	241／5068．	4601539.	24，4\％－4\％
pulse materatallizaidicn	0.	116471.	116436\％．	3．53．	516124.	711：15．	$\therefore \quad \because \quad$＇s
SCAN KKGCYSTALIIGATjCN	0.	116471.	1164707.	320：2．	115592．	$43: 16$.	$\because$ 号 ${ }^{\text {a }}$
S－Dipart laplaktaidicn	0.	466159.	233175.	luvi6．	617501.	89775.	1s15dsy．
aianlal	0.	11，47\％．	1164107.	32032．	315592.	43236.	1546319.
ov CPal phes：confact	0.	1154707.	11047082.	151113.	16672924．	2462121.	23L84560．
PhCAT CC：TACR SIMTESING	0.	116471.	1164707.	32032.	315592.	43236.	1546319.
CELL Crosecas	0.	256545.	1162379.	48045.	278464.	39640.	1682757.
CELL SMTEFCCHMECTICN	0.	34037.	232244.	172174.	540394.	108448.	1cc6285．
OV Sicz cryicil ccuea	0.	231793.	2317796.	835164.	42251552.	12549110．	$53817560^{\circ}$
OY cr ：Sioz Stasti ate	0.	211760.	2117796．	583549.	25966560.	8570563.	38544560.
Pambl hljch if anjkfi	0.	$34 \% 060$	232709.	1205217.	1734618.	523568.	$345049 \%$ ．
	0.	341337.	232344.	172174.	557523.	117425.	103012.1
ECyituodinaz cuz	0.	2305050	111，2379．	40049.	$370064{ }^{\circ}$	34680.	1682757.
KArily Eipe arfilcazicn	0.	34974.	233171.	89210.	6577.	2744.	$33910 \%$ ．
atifay sicie roic is Pack	0.	34976.	233176．	95076.	18771.	5701.	387720.
TELiviEndzC	0.	${ }^{0}$	467\％．	66225．	1739999.	36450.	$\begin{array}{r}1942673 . \\ \hline 14126132\end{array}$
CradiEA irs：iy	0.	1735.	8677.	1791093.	9099153.	2225474.	13126132.
CCRE E？F：4：F	0.	104877．	524303.	651563.	533127．	100582.	1934530.
MASK CLEAVUP DEVICE	0.	$8{ }^{0} 4$.	4370.	035351.	15352445.	1184624.	17372416.
DVCFIMT－MCCN4bCIS	0.	874. 0.	4370.	376320 373270	6013495. 103000	2959468.	4016138．
LIこU地AL rIEELINE ipch Pif－lix．	0.	0.	0.	373270. 30102.	103000. 28250.	27410．	$50+580$. 65980.
AL Alloystu runatace	0.	0.	0.	103369.	915000.	64800.	108d168．
IRCM Alloring putance	0.	0.	0.	36123.	305000.	21600．	362723.
comidmbios caster．	0.	0.	0.	66225.	27900.	5670.	99795.
AL Slab cutrer	0.	0.	0.	19061.	15200.	1026.	34287.
bl Dí Castáa	73750．	0.	0.	61215.	875000.	276250.	124＊2\％．

## TABLE 10.9 (Continued)



TABLE 10.10: SUMMARY OF BASELINE CASE

```
TOTAL OIRECT NON-RECURRING COST =$10732580900.
TOTAL DIRECT RECURKING CCST =$ 1000278020.
TOTAL DIRECT PEODUCTICN MASS (KG) = 9448325.
TOTAL DIKECT PROOUCTICN POHER (KW) = 232489.
TOTAL UIRECT PECDUCTICA CREF= 216. PECPIE
TOTAL SBP CAEW = 433.
CREM TAANSPOET HASS = 173151. KG. CONSUMABLE HASS m 131140. KG
CREH TRANSPORT COST=$ 77918080. CONSU#ABLES COST= 12114043.
CREH TRAINING COSIS =$ 21643920.
SUEECET CRLW HAGES =$ 65153504.
SUPFCRT EXPENDABLES TFANSPCRT CCST =$ 0.
HABITAT MASS (KG) = 1315950.
HAEITAT POWEA (KW) a 3896.
REC AND EROCUEEMEST CCST OF HABITAT ($) = 508594688.
TRANSPOKT CCST OP HABITAT ($) = 131594992.
YOUER COST OR IIASITAT ($) = 11687717.
NONRECUREING COST OF KONPRODUCTIOE SHE =$ 50000000.
TOTAL SBE BASS (KG) = 15130126.
TOTAL SHP PCWER (KW)=237385.
SM: SURPOET TRANSPORT UST =$20100C000.
SHF SUPPODT POUEILCCST =$ 2000000.
SETUP COSTS =$ 3086410. FOR 8. PROPLE
 {\{!&$$$ DIRECT COSTS: NONRECURRING m$10732580900., RECUREIMG =$ 1000278020.
SiS$S&SS IHDIRECT COSIS: NONRECUBAIUG =$ 907963392.e BRCUREIUG =$ 177829536.
$&$$&$$$ SHF LIFE CICIE COSTSa$ 21670486000.
Ss$Sssss DISCOUHTED AVEBAGE SPS COST=S 1083524100.
```

The "bottom line" of the baseline case is a nonrecurring cost of \$ll. 6 billion, with a recurring cost of $\$ 1.2$ billion per year at a production rate of 1 SPS/year. It should be emphasized that this cost per SPS is only for operations at the $S M F$, and does not take into account the mining, refining, and final assembly stages of production, nor does it include the initial costs of the lunar base and transport system. With the exception of solar cell manufacture, the cost of products from the SMF are of the same order as those estimated previously for terrestrially manufactured components. In the case of the solar cells, an order of magnitude reduction in costs appears possible due to the favorable effects of the space environment. These include the ready availability of low cost power, the vacuum environment which allows use of the low cost vapor deposition techniques, and the integrated facility with all processes colocated (thus avoiding reheating the intermediate products between production steps, and intermediate packaging and transportation costs). Possible sources of cost variations could be the cost of ground support (not inciuded here), possible increases in $R \& D$ and procurement costs above those listed in Table 10.4, and lack of experimental verification of the efficiencies of vapor deposited solar cells. The baseline cost estimate does, however, demonstrate that a space manufacturing facility could operate com10.21
petitively with earth manufacturing. The required crew to operate the baseline SMF is 433 people.

With the results from the basel 'e, it is interesting to do a variation of parameters analysis to find solution sensitivity. Figure 10.1 shows the effect of normalized failure rate on the crew size of the SMF. The normalized failure or duty cycle for each machine or pr $\quad$ s printed out in the program output given in the App or example the base case duty cycle for the solar cell ractory is $96.2 \%$. The abcissa of this graph is the log of the failure rate, normalized to the baseline component failure rates. Therefore, -1.0 represents a system in which individual components are ten times less likely to fail, whereas 1.0 is a system with components ten times more likely to malfunction. It can be seen that crew size increases rapidly with increasing failure rates. The difference in the two curves ("human" vs. "automated" repair) refers to a tradeoff between repair options 2 and 4 in the so'ar cell factory; that is, whether the parts replaced by the crawler are repaired by people or automated repair machinery. All on-site work in the solar cell factory is still performed remotely; all repair in the components factory is done manually in either case. The results shown here indicate that it is b-tter to automate the repair shop, although the difference in crew requirements is not large.


Figure 10.2 shows the same variation in component duty cycies, this time plotted against nonrecurring and recurring costs. One assumption used in the program implementation can be clearly seen in this figure: that there is an interrelationship between equipment reliability and initial (R \& D and procurement) cost. A scarcity of data exists which is applicable to this problem; and in the final analysis, a loglinear relationship between duty cycle and $R \& D$ and procuremerit costs was assumed. Thus, for the baseline case of high technology, $R \& D$ costs was $\$ 20000 / k g$, and procurement cost was $\$ 2000 / \mathrm{kg}$. If the component duty cycle varied from $99 \%$ to $99.9 \%$ ( 10 times less likely to fail), the initial costs also varied by a factor of 10 , to $\$ 200,000 / \mathrm{kg}$ and $\$ 20000 / \mathrm{kg}, \quad$ espectively. Similarly, a variation in the baseline duty cycle down to $90 \%$ reduced costs to $\$ 2000 / \mathrm{kg}$ and $\$ 200 / \mathrm{kg}$. The effect of a sizable change in the duty cycle was therefore equivalent to increasing or decreasing ir? estimated technology level nf the component. The effects of this assumption are evidenc.: i the curves in Fig. 10.2.

Figure 10.3 expands the scale of the ordinate, for a better view of the trends of nonrecurring costs. At lower failure rates, the equipment has higher initial costs. However, as the failure rate increases, the nonrecurring cost per machine decreases, but the number of machines must increase to keep production levels constant with the now increased down

REPAIR:

time. Therefore, an optimum failure rate exists: á approximataly four times the baseline component failure rate, the tradeoff between initial cost per machine and number of machines results in a minimum nonrecurring cost of about \$i. 2 billion, compared to a baseline nonrecurring cost of $\$ 11.6$ biliion.

Siniflarly, figure 10.4 sico:s the relationship between reliability and number of machines for the recurring costs. Increasing failures creates increasing rcfair costs. Decreasing failures should decrease repair costs, but all machines have a non-zero minimum maintenance requirement, and as the procurement cost increases, so does the cost of spare parts.


FIGURE 10.4

A minimum recurring cost coincidentlly occurs at a failure rate about that of the baseline assumptions of reliability. Although several man-years (and CPU-days) of effort could be spent in further variation of parameters studies, two basic conclusions come out of tris costing andysis. The first is that the total SMF system costs, derived from the best estimates of machine characteristics as presented in the baseline SMF design, are \$11.6 billion for nonrecurring, and \$1.2 biliion per year for racurring costs. These costs are competitive with ground-based production of the same product, one solar
power satellite per year. The second is that, based on an assumed relation between nonrecurring parts costs and reliability, optimum failure rates exist which result in minimum nonrecurring and recurring costs. However, these minima generally do not occur at the same failure rate. A further tradeoff study between initial and yearly costs is necessary.

The life cycle costs for the SHF producing one SPS per year for twenty years at a discount rate of $10 \%$ follows direct$1 y$ from fig. 10.2 and is shown in fig. 10.5. Again, it must be emphasized that these are SMF incurred costs and do not include sither the lunar base or terrestrial facilities such as the rectenna add distribution system, as well as operating costs for these facilities.

Finally, it must be emphasized that cost estimates of future, and speculative, space systems must inevitably be based on high deyree of uncertainty. In this section the study group has attempted to demonstrate the effects of varying one of the parameters which has the greatest degree of uncertainty: failure rate of equipment and hence machine duty cycle. It is of course possible to conduct similar parameter variation analyses with other of the many sensitive parameters of the system, such as transportation costs, productiviiy of labor in space, and the many factors discussed in Chapters 12 and 13; however the abrive example is sufficiently illustrative of the


FIGURE 10.5
sensitivity of costs to the assumptions used in this analysis.
Another area of uncertainty involves the cost of developing the specializedequipment for the SMF. This cost is covered partly by the R 8 D costing baseline of Table 10.4 and partly by an additional process development and systems integration cost assigned to each of the sixty processes which make up the SHF. These costs were assigned even to a well established process on the assumption that space rating would add new operational constraints requiring further development. The cost for each process is listed in the Appendix and varies from $\$ 10 \times 10^{6}$ to $\$ 100 \times 10^{6}$ depending on complexity and maturity of the process. The lower amount was applied to well developed systems, the upper limit to new and novel space oriented concepts.

As mentioned previously the costs presented here are based on extensive discussions with organizations well acquainted with the terrestrial application of most of the processes used. However, in the final analysis, translation of this collective experience to an operating systems in space is a highly subjective process. Different experiences and different view pcints will result in different estimates as to the baseline costs. It is hoped that the degree of detail used in defining the SMF and its many subsystems as well as the flexibility built in to the costing algorithms wil! allow readers to arrive at their own conclusions as to the system costs.

The costs presunted here should be considered as first
estimates only, based on the best available information and on as detailed a component breakdown as time permitted. As such they indicate that the proposed concept is an attractive choice for the manufacture of SPS, and probably other space hardware, worthy of further investigation.

## CHAPTER 11

OPTIMUM BUILD:̈P SEENARIO
Having derived a total SMF system in the preceeding chapters, and estimated the initial and yearly costs associated with it, a sufficient amount of information exists to examine various options in SMF deployment. The setup analysis in Chap. 10 assumed one year of space operations before SMF initial operational capability. This seems easily achievable, from Space Systems Lab experience in simulated weightless assembly.

However, this technical feasibility does not automatically imply practical feasibiiity. It is necessary to consider the SMF in the context of the total system of space industrialization.

It is unlikely, based on the results of the companion General Dynamics study (Ref. ll.l) that the point-design SMF would be a serious contender for funding until after SPS's had been built from terrestrial materials. It is conceivable that the SMF might be constructed as a single unit, and all SPS production suddenly switched over to nonterrestrial materials; it is much more likely that space-manufactured components would be slowly phased into SPS construction, and a gradual change form terrestrial to nonterrestrial materials would occur. The MIT study group proposed to study this lunar materials phase-in, using a linear program optimization technique.

Each element of the SMF can be characterized simply by three parameters: the non-recurring cost of the element, the production cost of one SPS ship-set of outputs from the element, and a fraction of SPS components which the element supplies. For example, the SMF can easily be broken down into a solar cell factory, a waveguide factory, a klystron factory, and a components (largely structural parts) factory. Although commonality between these factories is exploited in the MIT baseline SMF, minimal machine duplication would ze necessary to separate the factory processes. Each factory would have its own initial and recurring costs and would supply a certain fraction of the SPS. An optimal build-up of the SMF might have an early switch to space-produced solar cells (due to the availability of the low-cost vapor deposition process), followed by components, waveguides, and finally by high-technology klystron components built in space. The reduction in cost of the SMF will be the motive for lead-in of space manufacturing; the gradual phasing is due to the advantage of delayed expenditures in discounted costs, and the use of early SPS power sales tc pay for later factory developments.

The optimization technique used for this study was linear programming. This technique is often used for optimization of manufacturing systems where output costs can be onsidered to scale linearly with plant size. Those not familiur with linear programming are referrec to some of the standard textbooks on
11.2
systems optimization, such as Ref. ll.2.
As a means of verifying the implementation of this technique, a simpler problem was first analyzed: to choose between ground-based conventional, earth-sourced SPS, and non-terrestrial SPS generating systems, with the objective function to maximize discounted net income.

Each system was characterized by a nonrecurring cost (necessary for the use of the system), and an operating cost per SPS or per SPS-sized ground equivalent system. One hundred primal variables were thus defined: yearly investment in earth and lunar nonrecurring costs, and yearly investment in earth and lunar SFS and ground power plants, for a 20 -year operational periof. (It was assumed that all R \& D has been returned on ground power systems, such as coal and fission). The objective function was to maximize net profits, measured as return from power plants minus investment in building and $R \& D$. The objective functicn included a $10 \%$ discount rate, thus, there was economic advantage in achieving immediate returns and deferring expenditures. It was felt that the optimum would prohably involve a progression from ground-based to terrestrial SPS to nonterrestrial SPS, as income supported further investment. A yearly budget limitation on outside capital eniering the system was also included.

The computer program used is listed, together with the tableau matrix listed and solved, in the Appendix. Because of limitations in the standard linear program formulation, the program in its present form is not capable of finding an optimal solution which includes the constraint that all the $R: D$ costs are expended before a system is used. This factor, and other non 1 inear effects such as the need to include existance variables recognizing when no costs are accrued due to non-use of a system, requires additional reformuiation of the of the problem, which is beyond the scope of the present contract. The development of the programi is however continuing under separate funding, and considerations will also be given to the use of the more complex integer or Iynamic programing techniques for circumventing the restrictions inherent in linear programming.

CHAPTER 12

## TECHNOLOGY EVOLUTION PROGRAM

## 12.1: GENERAL REMARKS

This chapter describes the research and development steps required to establish the technology for the reference space Manufacturing Facility. Although this program is keyed to the proposed reference $S M F$, it serves as a useful example of the scale and scope of $R$ \& D required for an $S M F$, and many of the steps described would be shared by other SMF designs.

The technology evolution program is actually a set of parallel programs. As described in Chap. 6, the reference SMF can be conceptually separated into the sections presented in Fig. 6.2, and repereed here in Fig. 12.1. Each section requires its ovin technology evolution program.

In general, these parallel programs have only minor effects on each other; for example, the development of waveguide production technology has little e sect on research into furnaces and casters, and vice-versa. Even those sections which receive products from other sections can have separate technilogy evolution. For example, the ribbon and sheet operations, which begin with a rolling process, are little affected by the production techniques for the input slabs. However, if research on metals furnaces and casters indicates that the production of slabs is excessively difficult, ihen the ribbon and sheet operations must be modified to use different inputs

(e.g. vapor-deposited sheet). Therefore the technology evolution programs for the SMF sections can be separate provided that the various inputs can outputs between sections remain effectively unchanged (i.e. any changes do not significantly affect subsequent operations).

This separation of technology evolution programs shorld not lead to duplication, however. A number of SMF seこtions share processes (though not equipment), and $R$ \& $D$ on these proresses should be integrated. For example, electra beam guns are used in a wide variety of applications at the reference SMF: welding, cutting, vaporization, recrystallization. Basic research on electron beam guns can therefore be applied to all these operations. This commonality of equipmerit was considered an advantage in the choice of reference SMF processes (see Chap. 5).

While the technology evolution programs for the various sections of the SMF can proceed simultaneously, this is in general not true of the $R \& D$ steps within each program. For most sections of the SMF, the technolog evolution for a given section is a sequence of research steps, each of which provides information and leads to a decision between alternative processes or equipment designs or operating procedu, es. Thus the information developed in the early steps has a significant impact on the later research in the program. Therefore the uncertainty in the definition of the programs increases through successive $R$ \& $D$ steps.

The det 1 s of the technology evolution programs can also be affected by research in areas other than the SMF. First investigations in other aspects of sface industrialization (e.g. lunar refining, transportation, SPS des: $\boldsymbol{g}^{\prime}$ ) can change the specifications of inputs and outputs of the SMF.

Second, the SMF technology evolution program can benefit from research done on related industrial processes on Earth. For example, the study group anticipates the: the next ten years will see intensive research on large-scale production of semiconductor materials and solar cells. Although the fundamental differences between the design environments in space and on Earth suggest that much of this research will not be applicable to space processes, the SMF technology evolution program can benefit greatly from the basic knowledge gained in solar cell performance, crystallography, doping, and array buildup. The technical challenge to the SMF desigrer will therefore be to apply the results of solar-cell production research on Edrth to the development of space processes whenever prssible.

The technology evolut . r. programs for the individual sections of the SMF a each separated into three phases: conceptual studies, ground experiments, and Shuttle experiments. The research and development therefore $\therefore$ :ogresses from an early general research program on the ground, inciuding versatile prototypes, to a more specific development effort in the Shuttle using more specialized spice hardware. At the conceptual stege, various options for SMF processes should be kept open, sin'e ihe eventual success of any one option canot be guarantéd. For example, the
development of SMF furnaces could begin with studies of several furnace options (centrifugal, induction, gas-suspension) including potential designs for multipurpose furnaces (multi-material, or multi-input-shape).

Although there is no sharp transition between general and specialized R\&D, each step in a technology evolution program aims at reducing the number of options to be investigated further, so that the complete program will produce findlized equipment. It is difficult to anticipate at what stages decisions between options should be made, because each step can uncover problems which may make the preferred options unworkable. The program therefore requires the flexibility to return to an earlier step if difficult problems develop. For example, if the Shuttle prototype for an aluminum-nelting furnace demonstrates unforeseen problems, the technology evolution program should be flexible enough to return to other options studied on the ground, and to develop an alternative space prototype.

The example above also suggests that Silf equipment designs should not be finalized before testing in space. Unlike earlier space hardware development, when the design philosopiny aimed at selection of options, construction and testing of prototypes, and finalization and fabrication of space hardware before launch, the SMF development should take advantage of the transportation cost reduction available from the shuttle to do in-space prototype testing, even if the prototype is not guaranteed to be successful. This flexibility is particularly important for the

R\&D on SMF processes which use the zerog environment to advantage or which are seriously affected by the absence of gravity (e.g. induction furnaces, zone refining, human operations). For those processes, basic questions of feasibility may not be answerable without space experiments.

The technology evolution prograra is presented in the following sections as a series of tables, each detailing the R\&D steps for a section of the reference SMF. The order of the steps is sequentials i.e., in most cases the early steps develop information useful in defining and executing the later ones. In some cases, certain R\&D steps can benefit from hardware developed in other steps. For example, the testing of prototype casters in the Shuttle can use a previously developed prototype metal furnace to feed molten metal to the test articles.

Most of the suggested Shuttle experiments and prototypes are small enough to fit within a Spacelab payload (in most cases, several such experiments could fit in ore flight). In fact, the in-space development articles could be flown as integrated multipurpose Spacelab missions. The study group feels that the Shuttle experiments in the technology evolution program could be performed with a small number of fights, at relatively little cost. At this level of investigation, however, definition of such integrated payloads is difficult, since experimental requirements and preferred process options are unknown.

Although the anticipated prototypes can fit within a Shutte pivload, in some cases the experimental requirements shjgest a
permanent orbital platform. Specifically, some prototypes might require sizeable power inputs (such as for furnaces, electron beam guns, lasers). These would therefore benefit from power sources parked in space, such as $25-\mathrm{kH}$ or $100-\mathrm{kH}$ modules. Similarly, some of these energy-intensive prototypes may require large heat-waste systems, and could therefore benefit from permanent cooling facilities and radiators. Finally, some of the experiments should be run several times with variation of experimental parameters. Such experiments could be left at an orbital platform between sets of runs, to allow return of output to Earth for examination and analysis; examples of such experiments include solar cell deposition processes and metal solidification processes. The orbital platform parking would avoid repeated Shuttle transportation.

The cuarall technology evolution program presented in the following sections details the R\&D required for the SMF, but not for its outputs; the SPS or other satellite components produced by the SMF would require a separate tect.nology evolution program. The program described in this chapter produces a set of working prototypes of the SMF hardware; in many cases, these prototypes are smaller than the SMF design components. The technology cutoff date is assumed to be the year 1990. Cost estimates for R\&D are detailed in Chapter 10. "Line Item Costing."

The study group again emphasizes that the following descriptions are keyed to the reference SMF, and that other SMF Gesigns would require different R\&D steps. Furthermore, the descriptions
alsc assume that the reference SNF processes chosen in Chapter 5 will be developed into space-rated hardware. However, shocid the chosen options prove unsatisfactory at any point in the R\&D procedure, other options would be substituted, changing some of the steps in the development program. Like the reference SMF design, the technology evolution program described below is a point design in a very wide field of alternatives.

## 12.2: R\&D: METALS FURHACES AMD CASTERS

Table 12.1 presents a listing of research and development steps for reference SMF furnaces and casters. The furnaces are space-specific designs, requiring conceptual development. These preliminary design efforts should assess the usefulness of ground prototypes for furnaces, i.e. the extent to which such prototypes can accurately model the zero-g designs. Zero-g is expected to reduce the furnace masses considerably, and very small space prototypes (e.g. 1 ton, not including power supplies anc w, at waste systems) should be possible. Furnaces also require development of refractory materials adapted to the space environment.

Similarly, casters should benefit from mass reductions in zero-g, but require specialized refractories. Tha casters are modifications of earth designs.

The steps are listed in a time sequence from initia? concepts, through design, ground prototype testing to final evaluation in a space environment.


Die caster and large-piece caster design	To produce preliminary designs of space-speciflc die casters and large-piece casters, based on earth designs, the metal solidification experiments, and the refractory materiaitests. Caste's receive molten $A 1$, Al alloy, Fe. Fe alloy. Design includes structural design, chotce of materials, estimation of injection pressures, thermal profiles. load nistories, input/ output systems, cooiing systems, automatic monttoring and control. design of pipes, valves, and pumps, estimation of power. mass (reduced by zero-g), maintenance, repair, logistics, and costs evaluation of technical uncertainiy and operational safety.	$x$		
Protctype furnaces	To develop useful ground prototypes of selected furnace options, if the zero-g effects can be adequately modeled or accounted for (otherwise space prototypes are required).		$X$	7
Prototype casters	To develop useful ground prototypes of the continuous caster. die casters, and large-piece caster, if the zero-g effects can be adequately modeled or accounted for (otherwise space prototypes are required).		$x$	$?$
Space prototypes of furnaces and casters	To develop and integrate spacerated furnaces, pipelines, pumps, continuous casters, die casters, and large-piece caster (casters can be integrated to furnaces and pipes one at a time). T!!; effort may require stepwise verification of furnaces. then case ters, with furnaces flown several times or parked in space. Inciudes development of automatic control systems, human main. tenance and repalr techniques in space, and long-term exposure to space environment. Output returned to Earth for analysis.			$X$
Prototype slab cutter	To develop a ground (but space-rated) prototype of a 128 kW electron beam cutter, including automatic fllament repiacement, cooling systems, automatic control, mechanical tracking. Tests on 2-cm-thick Ai slab. Development of maintenance and rapair techniques. Emphasis on rellability.		$x$	

## 12.3: R\&D: RIBBOH AND SHEET OPERATIO!IS

Table 12.2 presents the technology evolution program for ribbon and sheet equipment. All of these devices are modifications of existing earth equipment, replacing conventional cutting and welding equipment with electron beams. The rolling devices írolling mill, ribbon slicer, and striator) are expected to have masses close to their earth counterparts, since the principal forces in such earth devices are tool-workpiece forces rather than gravitational forces.

However, the lack of a floor to anchor the machines (thus damping vibrations) requires the development of active damping systems; the designs must also be modified for maximum automation, compatibility with vacuum, and ease of in-space repair. These considerations also apply to the other ribbon and sheet operations devices.
objective

RESEARCH ITEM	ObJECTIVE	¢0	¢	nw
$\begin{aligned} & \text { Prototype rolling } \\ & \text { mill } \end{aligned}$	To produce design of space-specific reversing rolling mill for Al and Al alloy and to develop a ground prototype (which may be somewhat different than the design, due to its large mass). Includes structural design, estimation of power, mass, maintenance, repair, logistics, and costs, load predictions, operational safety, control requirements and systems. Prototype includes active viorationdamping, automatic control, in-space repair features. input/output systens. If possible, tests on space-cast slabs.	X	$x$	
Prototype electron beam cutters	To develop ground (but space-rated) prototypes of ribbon-cutting EB guns (research can benefit from development of slab cutter). Prototypes include automatic fllament replacement, cooling systems, autoratic control, tracking systems. Tests on Al and Al alloy ribhon. Development of maintenance and repair techniques. Emphasis on reliability and accuracy.		X	
Prototype electron beam welders	To develop ground (but space-rated) prototypes of sheetwolding guns. Prototypes include same features as EB cutters. Tests include verification of weld properties. Development of maintenance and repair techniques. Emphasis on reliability, and on accuracy of control and tracking systems and techniques.		$x$	
Prototype ribbon slicer	To produce space-specific design of sifing-rollers device for Al and Al alloy ribbon, and to develop ground prototype (possibly different from design, due to high mass). This is a modification of the rolling mill design and rolling mill prototype, without reversing action. Tests of longevity, reliability. Deveiopment of techniques to vary output specifications.	x	X	
DeveTopment of striated heat pipes and heat pipe fluids	To verify the feasibility and assess ihe. requirements of striated heat pipes for klystron radiators, inciuding development of a heat pipe fluid compatible with aluminum andowith suitable boiling temperature. Modifications to the heit pipe design should be made as needed. Effects of zero-g on heat pipe operation should be assessed (tr's may require space experiments).		$x$	. 7



RESEARCH ITEM

## OBJECTIVE

Prototype DC-DC converter radiator assembly device	To develop ground (but space-rated) prototype of large-radiator assembly device, incruding automatic control, active vibration damping, in-space repair features. Tests of reliability and output quality. Assessment of accuracy of ground simulation (high mass of radiator leads to different structural requirements on equipment).		X	
Integration of ribbon and sheet operations ground prototypes	To integrade the ground prototypes of rolling mill. EB cutters and welders, ribbon slicer, striator, form roller, and radiator assembly devices into a working, fully automated prototype of the reference SMF sheet and ribbon operations section. Includes development of handing systems (space-rated) and automatic control devices. Tests of system, including maintenance and repair.		x	
Space prototypes of rolling mill. ribbon slicer. and striator	To develop and test space prototypes of the related rolling devices. Includes tests of active damping systems, reliability, versatility, in-space repair. Due to mass of the prototypes (iess than SMF machines, but still significant) these devices are candidates for orbital parking. Output returned to Earth for analysis.			x
Space prototypes of integrated sheet and ribbon devices	To develop space prototypes of the remaining devices in the sheet and ribbon operations section (many of the ground prototypes are already space rated) and to test these together with the space prototypes of rolling equipment. Includes tests of reliability, output quality, in-space maintenance and repair. Despite their number, these devices are not expected to mass mora than one Shuttle payload; they may require additional power, however.			X

12.4: R\&D: INSULATED WIRE PRODUCTION

The technology evolution program for the reference SiAF insulated wire production section is detailed in Table 12.3. The glass fiber producer is an automated space-specific design, which therefore requires conceptual and experimental research. The wire wrapper is a relatively simple modification of existing earth equipment.

## RESEARCH ITEM

OBJECTIVE

Design of glass fiter producer	To produce a space-specific dejign of an automatic glass fiber producer. Includes investigation of suitable glass compositions available from lunar materials, alloys resistant to corrosion by molten glass and vacuum, heating systems, temperature and viscosity profiles, estimation of piston and tube loads, sizing and structural design, estimation of maintenance, repair, and costs, evaluation of rechnical uncertainty and operational safety, design of automatic spool threaders and control systems.	X		
Space oxperiment on fiter production	To investiqate experimentally the effect of zero-g on the drawing of glass fibers through dies. lncludes relationships between glass composition, molten giass pressure, die geometry, glass fiber diameter, drawing speed, and fiber quality. This is a small experiment; the output is returned to Earth for analysis. It may be advantageous to repeat the experiment after initial evaluation.			X
Prototype glass   fiber producer	To develop ground (but space-rated) prototype of glass-fiber proJucer, based on preliminary design and Shuttle experiment results. Tests of equipment reliability, and of output quality (provided zero-g effects can be accounted for--otherwise in-space testing may be necessary).		K	$?$
Prototype insulation winder	To develop a ground (but soace-rated) prototyp? of an insulation winder. This is a modification of an earth wire wrapper, adapted to vacuum operations and use of spools cf glass fibers. Prototype includes automatic loading systems for spools. Tests of equipment relfability, ease of in-space repair.		X	

## 12.5: R\&D: DC-DC CONVERTER PRODUCTIGN

Table 12.4 details the R\&D steps for DC-DC converter production. Because only 461 DC-DC converters are required per year, the development of sophisticated automatic machinery is not warranted. Coolant channel drilling and coil winding are done by relatively simple modifications of existing earth equif: ent. The control circuitry for the converters is assembled to the cores ranually. The procedures are simple enough that spacn prototypes should not be required.

```
TABLE 12.4: R & D: DC-CC CONVERTER PRODUCTION
```

RESEARCH ITEM
Qbjective

$\begin{aligned} & \vec{N} \\ & \bullet \\ & 0 \end{aligned}$	Prototype channel drill	To c velup a ground (but space-rated) prototype of a numerically controlled deep drill ( 3 m long bit) for driliing of coolant channels through SENDUST cores. This design is based on existing earth equipment, modified to emphasize tool longevity. Tests on equipment reliability.		$X$	
	Prototype coil winder	To develop a ground (but space-ratad) prototype of an automatic winder to wrap insulated wire around the transformer core limbs. Design is based on existing earth equipment, modified for operation in vacuum. Tests on equipment reliability.		X	
	Definition aṛd test of assembly tasks	To define - quired maıual assembly tasks for cuntrol circuitry and to model these tasks in ground simulations.	X	$\times$	

## 12.6: R\&D: KLYSTRON PRODUCTION

In the absence of a detailed klystron design for the SPS, specific production equipment designs are not available, and therefore the technology evolution program listed in Table 12.5 is only general. The first item is therefore the detailed definition of a klystron design, optimized for SPS operation, use of lunar materials, and SMF manufacture.

Consultation by the study group on the subject of klystron manufacture inc.cate that the usual production steps can be performed by conventional precision equipment. The technology evolution program therefore requires the development of integrated, fully automated production devices for the klystron assemblies, followed by the adaptation of these ground prototypes ints space prototypes. In view of the complexity and precision anticipated, the final space prototype should be tested in the Shuttle.

TABLE 12.5: R \& D: KLYSTRON PRODUCTION

RESEARCH ITEM	OBJECTIVE	$10^{\circ}$	\|lal	(
Design of klystron and klystron assembly production sequence	To produce a klystron assembly design optimized for SPS operation. use of lunar materials, and Shf manufacture, and to define in detall the sequence of production steps. including allowable manufacturing tradeoffs and tolerances. Includes determination of components manufactured at SMF vs. produced on Earth.	$\chi$	X	
Prototype klystron assembly production equipment	To develop an integrated, fully automated set of ground prototypes for production machinery. Emphasis on maximum automation and reliabillty, ease of repair. Tests of output quality.		X	
```Space prototypes of klystron assembly pro- duction equipment```	To develop space-rated versions of the ground prototypes, including quality control systems and space-spectfic devices 〈e.g. E8 welders). Shuttle tests to verify operation, reliability, in-space maintenance and repair, and output quality. Due to mass and complexity of equipment, integrated prototypes may benefit from in-space parking.			$x$

12.7: R\&D: SOLAR CELL PRODUCTION

Table 12.6 details the steps in the R\&D of the reference SMF solar cell production processes. As a first step, the study group recommends the establishment of a permanent task force to review the very considerable amounc of new developments in solar cell production technizues. During this contract the study group received and reviewed published reports flom a large number of research outfits in many countries; sources of information include many journals seldom found on aerospace shelves. Much of this information is not applicable to space operations; however, many concepts could be adapted to space use--in most cases, this is an option never considered by the concep s' authors.

The study group again emphasizes that this technology evolution program is keyed to the reference SMF, and therefore conceptual studies should keep alternative production options open. At this level of design, a final decision on a solar cell production scheme would be premature.

The suggested R\&D steps include conceptual studies for those processes (zone refining, direct vaporization, recrystallization, laser cutting, glass layer production) which have not been applied in space before, and which carry some uncertainty about their feasibility or basic requirements. In nost cases, these conceptual studies lead to ground protocypes, then to space prototypes. In a number of cases, however, the study group recommends following the conceptual study with a small-scale shuttle experiment to assess the effect of zero-g on the process. This then 12.21
leads to design of ground or space prototypes, as needed.
In some cases, the suggested processes have been sufficientiy researched and applied on Earth that developnent of prototypes can begin without extensive conceptual research.

RESEARCH ITEM	OBJECTIVE		唇	就
Continuocs review of developments in solar cell production techniques	To review the large number of current researih findings on solar cell production alternatives (Dublished by many research teame). and to assess the applicability of these developments to space operations.	X		
Conceptual studies of solar cell produciion systems	To investigate alternative processes and production sequence for the manufacture of solar cells at the SMF. Includes preliminary operations layouts and designs, estimation of mass, power, maintenance, repair, logistics, and costs, evaluation of technical uncertainty and operational safety, ease of automation did repair. tput quality, and comparison of options. Definition of technulogy evolution programs for alternatives.	X		
```Conceptual study and space experi- ments oll zone refining```	To investigate, theoretically and experimentally, the effect of zero-g on the zone refining process. Includes deteimination of optimum zone refining parameters to maximize zone tiavel rate and minimize number of passes required for purification and study of effects uf types and concentrations of impurities on refining requirements. Output returned to Earth for analysis. Equipment is expected to be small.	$x$		$x$
Prototype zone refiner	To develop a prototype zone refiner for the reference SMF, to purify metallurgical grade Sifrom the Moon to semiconductor grade. This is a ground device, if the zero-g affects can be accurately modeled or accounted for (otherwise. a space prototype is required). Prototype includes feed and handiny systems. heating and cooling systems, quality control tentors an automatic control systems. Tests of effects of operati:, iarameters on output quality. Emphasis on maximum automation, ease of in-space repair.		X	$?$
Space proto:ype of zone refiner	To develop and test a space-rated protot; pe of the reference SMF zone refiner. This device may require a power source beyond the shuttie's, and may bene'it from in-orbit parking between test runs. Output is returned to Earth for analysis.			$\chi$

## RESEARCH ITEM

Conceptual study and space experiments on direct vaporization	To investigate, theoretically and experimentally, the affects of zero-g on direct vaporization of Al, S1. Sto and to produce preimminary designs of direct vaporization devites. Inciudes ovaluation of effects of deposition parameters (e.g. pressure of vapor, deposition surface temperature and morphology, thermal profiles) on properties of deposited output.	X		$x$
Prototype direct vaporization devices	To develop ground prototypes of OV devices for AI, S1, S $\mathrm{SO}_{2}$, 1 f zero-g effects can be accurately modeled or accounted for ${ }^{2}$ (otherwise space prototypes are requirad). Includes development of thermal belt, EB tracking control, slab feecing mechanisms, quality control systems, maintenance and repair techniques, cooling systems. Tests of equipment rellability and output properties.		$x$	$?$
Prototype ion Implantation devices	To develop a ground (but space-rated) ion implantation device for boron and phosphorus, from existing equipment. Emphasis on deeper penetration (2-5 microns) full automation, longevity of equipment. - Tests of equipment reliability, doping profiles. implantation damage. Assessment of compatibility with oV of silicon.		$x$	
Conceptual studies and experiments on recrystallization	To investigate, theoretically and experimentaily on the ground, the feasibility and requirements for recrystalitization of directvaporized layers of silicon. Includes studias of pulse and scan recrystallization, effects of silicon morphology, pulsing/scanning parameters, and environmental factors on recrystallized output. Production of preliminary designs for recrystalifzation devices. and of designs for space experiments.	$\pm$	$x$	
Space experiments on recrystallization	To investigate the effects of zero-g on recrystallization of silicon layers. Equipment is expected to be small. Output returned to Earth for analysis.			$x$
Prototype recrys. tallization devices	To develop ground prototypes of recrystallizers for the reference SMF, if zero-g eifects can be accurately modeled or accounted for (otherwise space prototypes are required). Emphasis on automation. reliability, ease of repair. Tests of output quality.		x	$?$


Space experiments on ion implantation damage anneal	To assess the effect of zero-g on pulsed-beam annealing of ion implantation damage. Equipment is expected to be small. Output is returned to Earth for analysis.		$X$
Prototype ion implantation damage anncaler	To develop a ground prototype of an fon implantation damage annealer, based on existing designs, if the zero-g effects can be accurately modeled or accounted for (otherwise a space prototype is required). Emphasis on automation, reliability, ease of repair. Tests of output quality.	X	$?$
Prototype of direct vaporizer with mask and mask cleanup device	To modify ground prototype of direct vaporizer for Al to operate through a shadow mask (to deposit top contact pattern). Includes development of space-rated mask with long life, and of device to urush deposited Al from mask automatically. Tests of output quality, equipment reliability.	X	
Space experiment oil front contact sintering	To investigate the effect of zero-g on pulsed-beam sintering of solar cell front contacts. Equipment is expected to be small. Output is returned to Earth for analysis. lncludes variation of sintering parameters.		$x$
Prototype front contact sintering device	To develop ground (or space, if needed) prototype of top contact sintering device, including tracking systems, in-space repair features, quality control systems, automatic control. Tests of equipment reliability and output quality.	$X$	$?$
Integrated space prototypes of solar cell deposition	To develop integrated, space-rated prototypes of thermal belt, direct vaporizers for $A l$ and $S i$, ion implanters for boron and phosphorus, masking of front contact, recrystallizers and ion implantation damage anneal, and front contact sintering. Inciudes automated control, quality control, input/output and handifing systems, tests of in-space maintenance and repair techniques. output (operational solar cells, without glass layers) is returned to Earth for analysis. Equipment estimated at less than one Shuttle payload, not including power and heat waste systems.		$X$

RESEARCH ITEM
OBJECTIVE

Conceptual study and experiments on laser cutting of solar cells	To investigate, theoretically and experimentally on the ground, the use of lasers to cut solar cell material. Includes effects of cutting parameters (wavelength, focusing, tracking speed. power) on resulting degradation of cell near cut.	$x$	X	
Prototype solar cell crosscutter and longitudinal cutter	To develop ground prototypes of laser cutting systems for solar cells, including automatic control, tracking systems, quality control. Tests on space-produced solar cell material or equivalent. Emphasis on equipment accuracy and reliability.		K	
Prototype direct vaporizer for interconnects	To develop a ground (but space-rated) prototype of a direct    roll up the output, automatic controls, cooling systems for EB guns. This device is a modification of other DV prototypes. Emphasis on reliability, ease of repair, automation.		X	
Prototype solar cell inter. connection device	To develop ground prototype of solar cell interconnection device (same as panel interconnection device). This is a sophisticated mechanical device, with tight tolerances. Emphasis on automation. reliability. Includes interconnect feed systems, sensor and alignment systems, electrostatic bonders. Tests on simulated solar cells and panels. Possible applications on Earth.		$\chi$	
Conceptual studies of optical cover and substrate production options	To review existing literature and to prodice preliminary designs of production options for $\mathrm{SiO}_{2}$ layers, including direct vaporization (reference SMF) and separate sheet production followed by e'ectrostatic or laser bonding. Includes assessment of feasibility and operational requirements. Preliminary designs include thermal profiles, load histories, power and mass requirements, estimates of maintenance, repair, logistics, and costs, assessment of reliability and output quality.	X		

objective

Prototype panel alignmerit and insertion device	To develop a ground (but space-rated) prototype of the panel alignment and spare panel insertion device. Inciudes full automation including sensing and control, in-space maintenance and repair features, maintenance and repair estimates. Tests of accuracy and reliability of equipment, and assessment of modifications required for zero-g use.		$x$	
Prototype kapton tape applicator	To develop a ground prototype of a kapton tape applicator to produce structurally connected solar array segments. Includes automatic sensing and control, tracking and loading systems, in-space repair features. Tests of reliability of equipment, using simulated solar cell panels. Assessment of modifications required for zero-g use.		X	
Prototype array segment packager	To develop a ground prototype of the array segment packager. Includes full automation (sensing, control, tracking), in-space repair features. Tests on simulated arrays, assessing equipment reliability, output quality, modifications required for zero-g.		X	
Integration of cell interconnection and panel/ array buildup prototypes	To i:itegrate the ground prototypes of devices to produce complete array segments from deposited solar cell material. Includes continuous processes, automated control, quality control, input/ output and handiing systems, maintenance and repair features. Tests on simulated or actual deposited solar cell material. Empiasis on reliabiifty, ease of repair, integrated control. Possible applications on earth.		$X$	
Integrated space prototypes of cell interconnection and palel/array buildup devices	To space-rate and test the integrated prototypes for production of array segments. Equipment is expected to fill less than a Shut:le payload, not including power and heat waste systems. Outpit returned to Earth for analysis.			$x$

TABLE 12.6 (Continued)

RESEARCH ITEM
Space prototype of complete solar cell production cell production strip. Includes structuraj integration of components, full automation, tests of in-space repair and main tenance, return of output to Earth for analysis. Equipment requires more tnan one Shuttle payload, in-space assembly and requires more tnan one Shuttle payload, in-space assembly and
checkout. Can be used to produce solar arrays for space use.

## 12.8: R\&D: WAVEGUIDE PRODUCTION

The R\&D steps for waveguide production in the reference SMF are detailed in Table 12.7. The study group recommends conceptual studies of the applicability of foamed glass to space components, and of the necessary properties of the material. Due to the proprietary nature of glass foaming processes, R\&D requirements for a foaming facility are uncertain, as are the achievable foamed glass structural properties. There is also uncertainty on the feasibility of laser smoothing or fusing of the material. These uncertainties can probably be resolved only by experimental research.

## RESEARCH ITEM <br> OBJECTIVE

RESEARCH ITEM	OBJECTIVE		(1)	(1)
Conceptual studies and deveiopment of foamed glass for waveguides	To investigate alternative methods and to produce preliminary designs for foamed glass production options. Includes assessment of uses, properties, and production requirements for foamed glass for space applications. Emphasis on lunar material use.	X	X	
Design of space powder mixer	To produce a preliminary design of a mixing device to blend $<5$ micron powders suspended in vacuum. Emphasis on component longevity, dutomation, in-space maintenance and repair.	$x$		
Snace prototype of powder mixer	To develop and test a space powder mixer. Equipment is expected to be small. Device and output are returned to Earth for analysis.			$x$
SDace experiments on glass foaming	To investigate experimentally the effect of zero-g on glass foaming processes. Variation of operating parameters to study relationships aff.eting output properties.			x
Design of glass foaming factlity	To produce preliminary design of a foaming/annealing furnace to produce foamed glass. Includes geometric design and sizing, static and dynamic load predictions, heating and cooling systems, temperature profiles, power and mass requirements, input/output systens, estimation of maintenance, repair, and logistics, evalu.. ation of technical uncertainty, required experiments, operational safety, control requirements, cost estimates.	$x$		
Prototype glass foaming facility	To develop a ground (but space-rated) prototype of the g?ass foaming facility (if the earlier space e;periments indicate that zero-g effects cannot be accounted for, a space prototype is required). Emphasis on equipment longevity, automation. Development of relationships between operating parameters and output sharacteristics.		X	?
Prototype foamed glass sawcutters	To develop ground (but space-rated) prototypes of multi-bladed band saws for slicing blocks of foamed glass. Includes chip removal systems, input/output and handing systems, maintenance and repair techniques, automatic control, quality control. Tests of blade longevity and output quality.		X	


Experiments on foamed glass smoothing	To investigate, experimentally on the ground, options for smoothing foamed-glass surfaces, including the use of lasers. Development of relationships between operating parameters and output quality. Tests are performed on space-produced foamed glass sheets or equivalent.	X
Prototype foamed glass smoother	To develop a ground prototype of the foamed glass smoother. Inciudes sheet handing and tracking systems, quality control. Emphas is on automation, accuracy of rutput, ease of repair.	x
Prototype waveguide   Al rirect vaporizer	To develop a ground (but space-rated) prototype of a DV device to apply Al interior coatings to waveguides. This is a modification of DV of Al devices fo: other SMF processes. Tests on smoothed foamed glass sheets, and evaluation of output qual ${ }^{\text {ty }}$.	x
Prototype laser cutters for foamed glass	To develon ground prototypes of laser cutting systems for foamed glass shel iz. including automatic control, tracking systems. quality control. Tests ${ }^{\prime} \mathrm{n} \mathrm{Nl}$-coated foamed giass sheets, using lasers to make straight cuts, slots, and holes. Emphasis on equipment accuracy and reliability.	x
Design of waveguide assembler and waveguide packager	To produce preliminary designs of waveguide assembler and waveguide packager, including automatic manipulator systrins, guide systems, laser fusing devices, quality control, packaging manipulators, and storage racks. Emphasis on full automation. accuracy of output, ease of repair.	
Prototype wa'eguide assembier and waveguide packager	To develop ground prototypes of waveguide assembler and packager, including full automation, handing systems, quality control devices, laser fusers. Tests of equipment accuracy and reliability, using Al-coated foamed glass strips as inputs, evaluation of output quality, and development of maintenance and repiir techiques.	X
Integration of waveguide production prototypes	To integrate the ground prototypes into a fully automated giass foaming and waveguide production line, including automatic handing and control, in-space maintenance and repair features. Emphasis on reliability, ease of repair, integrated control. accuracy of output.	X

## TABLE 12.7 (Continued)

RESEARCH ITEM
OBJECTIVE
Space prototype of waveguide production system

## To space-rate and test the integrated ground prototypes.

 Includes structural integration of components, full automation. tests of in-space maintenance and repair, return of output to Earth for analysis. Equipment requires roughly one Shuttie Earth for analysis. Equipment requires roughiy one Shutife payload (not including power and heat waste systems) and inspace assembiy.

## 12.9: R\&D: SUPPORT EQUIPMENT

Table 12.8 describes the major steps in the technology evolution for reference SMC support equipment. In general, the development of the SMF support equipment shares a number of steps with SPS development and the development of likely near-term space hardware (e.g, orbital antenna farms, Shuttle service stations, space stations). Therefore some of the R\&D may be shared with other programs.

For a number of support equipment sections, ground and space prototypes are useful for component verification, but the final verification requires tr full-scale structure. Exampies are the input/output station, power plant, production control systems, stationkeeping and attitude control, and structure. In these cases the technology evolution program aims at developing sufficient knowledge and experience with the prototypes to produce final designs for the sections, with confidence in their proper function after construction.

The study group feels that the most demanding technology evolution tasks for support equipment are the development of repair automata, the development of free-flying hybrid teleoperators, and the development and integration of the computer hardware and software for production control.

RESEARCH ITEM
obJECTIVE

	Design \& graund tests of input/O'sf'st station	To produce a design of the cargo and personnel docking factle ties, inciuding siructural design of damped impact-resistant structure, docking latches, manipulator cranes (with lifesupport pjas, control computers. end effectors). androgyne docking rings, airlocks, and pressurized tunnel. Also ground tests on equipment components, stressing reliability, longevity, ease of repair.	$X$	$X$	
$\stackrel{\rightharpoonup}{n}$	Oesign \& ground tests of internal transport $a$ storage devices	To produce a design for the maznetic cart internal transport syster and for the finternal storage device. Internal transport includes track, carts, magnetic drive components, control actuators, sensors, routing control hardware 8 software. 8 cart/cargo interfaces. Internal storage device inciudes nolding racks, drive systems, input/output devices, labeling systems. control hardware \& software. Destgn work includes load predictians, geometric design a sizing, estimates of maintenance \& repair, evaluation of operational safety. Tests of component longevity, reliability, ease of repair. Evaludtion of modifications required for zero-g use.	$x$	$\chi$	
	Design \& ground tests of crawlers	To produce 8 ground test designs for solar cell factory crawiers, including structural design, drive systems, tracks \& support structure, sensors, computer hardware and software, communications, manipulators, end effectors. Crawlers are specialized to the sections they service. \& therefore require variations on a basic design. Tests of component accuracy and reliability, \& development of ground prototypes. Design of control software, crawler/internal transport interface, maintenance \& repafr techniques. Evaluation of modifications needed for zero-g use.	X	$x$	
	Design \& ground tests of power plant components	To produce a design for the reference SMF power plant, including solar array, $D C-O C$ and $D C-A C$ converters, power feed systems. emergency fuel celis, switching systems, \& control hardware \&. software (much of this design matches components of the SPS). Includes mass, maintenance, repair. logistics, \& cost estimates. structural design of solar array \& busbars (design work interfaces with SMF structure developmentl. sizing of fuel cells \& converters. Tests on components, stressing reliability, ease of assembly (some of these tests probably done during SPS development). Investigation of bootstrapping poesibilities.	$\bar{\chi}$	$X$	

## OBJECTIVE

RESEARCH ITEM	OBJECTIVE	¢	㐫	¢
Design \& ground tests of production control systems	To investigate production control options and to produce preliminary designs of space-rated computers, monitoring sensors. data transmissicn systems, status display systems, routing control software, invertory control software, malntenance \& repalr scheduling software, computer hierarchies, damagetolerance techniques (e,g. redundancy, distributed controis with self-reconfiguration), management structures. Simulations of various software options \& ground tests of hardware, leading to fuli-scale simulation of sMf operations. including faliures \& changes in production objectives.	$X$	$X$	
Design - 8 ground tests cf habitation components	To produce a design for a modular zero-g habitat made from converted Shuttie external tanks, including interior structures, life-support systems (closed water cycle). airlorks, structural attachments, thermal control, shielding requirements, emergoncy systems. Design work includes load predice tions, structural design, estinates of mass, power, maintenance, repair, logistics, \& costs, in-spaca malntenance \& repair features, evaluation of tecnnical uncertalnty 8 operational safety, development of space workers' nutritional. recreational, \& physicol requirements \& work schedules. Tests of habitation ccmponents, with emphasis on reifability, \& simulations of living conditions. Huch of this research may be shared with near-term space station development.	$X$	$x$	
Jesign \& ground tests of statien. keeping and attituse control equipment	To produce designs of stationkeeping equipment. Inciudes computation of orbital requirements, estimation of attitude control requirements, design of navigation \& attitude sensors, guidance computers, oxygen thrusters (e.g. resistojets, ion). Ground tests of hardware, \& computer simulations of orbital \& attituae perturbations s software response. Some design work \& tests common with SPS development.	$x$	$x$	
Design \& ground tests of SMF structure component	To produce a design for the SMF structure, including central inast, solar array supports, factory equipment support structure, flexible joints with active damping systems. This design is interfaced with the design of internal transport tracks a power feed systems, which may be structural. Design includes	$X$	$x$	

RESEARCH ITEM (continued) OBJECTIVE

	development of position and deformation sensors, maintenance $\&$ repair techniques, mass 8 cost estlmates, evaluation of operational safety. Emphasis on ease of in-space asiembiy $\&$ repalr. Tests of position sinsors, active damping systems, assembly \& repair testinta. \& computer simulations to predict load histories \& c. aquirements.			
Design \& ground tests of repair shop components	ro produce designs for c shops made from converted Shuttie external tan... in: uding human work areas, lifesupport systems, alrlncks, interior structures, emergency systems, structural attachments, repalr aucomata, spare farts racks, input/output systems. Design work shares common efforts with habitat development; includes load predictions, structural design, estimates of mass, power, maintenance, repair, logistics, i costs, evaluation of operational safety, shiteding requirements, development of versatile zero-g workshop machines, development of automated repair machinery (several types). development of thermal control systems 8 toxic-qas scrubbers. Tests of components, with emphasis on rellability a adse of repair in space, \& simulations of work conditions. Assessment of modifications for use in zero-g.	$\chi$	$x$	
Design \& ground tests of freeflying teleoperators	To produce a destgn for dersatile free-flying hybrid teleoperator for repair maintenance operations in the solarcell factory. Based on the Sluttle Teleoperator Retrieval System, this design includes multipurpose manipulators a end effectors, navigation systems. tirusters, communications hardware, sensors, computers, gever supplies, propellant tanks, \& a remote control station design wort includes definition of specific tasks \& reauiremeris, component design, system integration, development if complex software structures (including telemetry links to remote computers). Tests of components (emphasis on reliability) : stmulations of integrated functions. Development of multi-media control station a communications links (video, audio, tactile). Assessment of modifications rea quirey for SMF use. May have some earth afflications.	$\chi$	$X$	



## CHAPTER 13

POSSIBLE SYSTEMS TRADEOFFS

## 13.1: INTRODUCTION

The SMF design which has evolved from this study is a reference design and only the obvious tradeoffs have been considered in its evolution. Final optimization of an SMF would require mach deeper analysis of the various alternate candidate systems than was possible within the time and cost constraints of this study. It is the purpose of this chapter to discuss briefly some of these tradeoffs.

## 13.2: OPTIMIZATION OF PRODUCT FOR USE OF LUNAR MATERIALS

One of the contractural guidelines of this study was that there would be no redesign of the SPS (chosen as an example product of the SMF) beyond lunar-material substitutions. This assumption forces unnecessary complexity on the SMF processes, and may lead to unrealistically high program costs. Significant reductions in SMF complexity can be obtained by designing the output specifically for lunar-material use and ease of space manufacture. Therefore a ful comparison of earth baseline and lunar material scenarios should include the option to optimize product designs within each scenaric.

More generally, the study should assess the physical and economic characteristics of the space production environment which drive the optimum design of SMF outputs. Examples of such characteristics are the availability of raw materials, the relative difficulties in refining various minerals, the
unsuitability of many traditional Earth processes, the advantages of processes unsuitable on Earth, the different cost patterns of energy, the availability of cheap vacuum, the effects of zero-g, and the relatively high cost oi human labor. All of these factors tend to rewrite the list of do's and don't's used in product design on Earth, and a systematic assessment of the optimum trends in product design for lunar material space manufacture would be a useful tool.

One possible approach could be an inyersion of the design philosophy used in studies to date. Rather than starting with a product design and asking "how can this be made in space from lunar materials? ${ }^{\text {M }}$, a study could begin with a list of available materials and a list of processes suitable for lunar and space use, (the processes graded according to simplicity and adaptation to the physical and economic conditions), and ask what useful products can be produced, and which are the simplest and least expensive to produce?".
13.3: EFFECT OF SPS MASS INCREASE

A likely result of tailoring the SPS design for ease of space manufacture from lunar materials is an increase in the SPS size and mass. For example, some of the complexity of the reference $S M F$ presented in this study results from the requirement for production of solar cells with $12.5 \%$ efficiency. An aiternative SPS design, using thin film cells or thermionic devices with $6 \%$ efficiency, might simplify the SMF aesign and therefore reduce the SMF costs. However, a $10-G W$ SPS would
then require a collection area of $200 \mathrm{~km}^{2}$ (rather than the baseline $100 \mathrm{~km}^{2}$ ), and would therefore be more massive than the baseline.

The tradeoff to be evaluated is the cost reduction in the SMF design (due to the use of simpler solar cell manufacturing techniques) versus cost increases due to: possible increases in attitude control requirements (propellant) for the SPS; a required increase in the production of raw materials from the lunar base; increased transportation costs for these raw materials; a required increase in the froduction capacity of the SMF; an increase in the assembly required per SPS. While the SMF related cost reductions and increases can be estimated from the SMF design, the other contributors to the tradeoff require further study. What is the cost of increments in lunar mining, transportation, assembly?
13.4: TRADEOFFS IN LUNAR REFINING

There are many possible lunar refining options, and these candidates vary in the range of output minerals and the purities of the outputs. In general, the larger the number of different outputs and the higher the output purities, the more complex and costly the refining equipment. On the other hand, a raduction in the available list of materials can force substitutions which complicate the manufacturing processes and degrade the performance of the final product. Similarly, a reduction in available purities can also increase the complexity of manufacture and decrease the final output quality.

Therefore there are tradeoffs between lunar equipment complexity and SMF equipment complexity and final product performance. As an example, if the production of S-glass on the Moon were difficult or impossible, the reference SMF might have to be modified to produce 5 -glass from lunar $\mathrm{SiO}_{2}$ and Earth inputs, thus increasing SMF complexity and earth material requirements. Or the system could be modified to avoid the need for S-glass, producting electrical insulation from other materials; this could degrade the performance of the SPS.

As another example, if semiconductor grade silicon were available from the Moon (rather than metallurgical grade) the reference SMF would not require a zone refining section. This example incroduces another tradeoff: the location of refining processes. In the reference design, the refining of silicon is split between the Moon and the SMF, while the refining of other materials is done on the Moon. Each location offers different advantages in refining, however: the Moon benefits from gravity, which allows many Earth processes unsuitable for zero-g, such as separations by liquid or solid density variations, column exchange processes, solubility processes; and there are benefits in launching only pure materials from the Moon. Howcver, labor may be more expensive on the Moon than in space, and the SMF benefits from continuous solar energy, Another consideration is the likelihood of c ntamina-
tion of purified materials during transportation from the Moon to the SMF. All of these issues require farther study.

Another tradeoff in lunar refining is scaling, or the buildup sequence for lunar operations. Should a full-scale, full-capability lunar base be established early in the program, or should a limited lunar facility be set up and progressively uprated? If a small scale base is set up to refine oxygen for interorbital propellant, at what time should the facility be expanded to produce raw materials? For the early SMF outputs, which materials should come from the Moon, and which from Earth?

## 13.5: TRANSPORTATION FROM THE MOON

Several options have been suggested for transportation of raw materials from the Moon: liquid chemical rocket, massdriver, nuclear rncket, aluminum powder/oxygen rocket, tethered satellice elevetor. Besides the uncertainties in the $R$ \& $D$ cost estimates for these options,several other issues also require study. The costs of several of these options are strongly dependent on the source of their propellant and/or energy. For example, the aluminum powder/oxygen rocket is a competitive option only if both Al powder and oxygen are available in large quantities from the lunar refining processes. Therefore the lunar base capabilities can affect the relative merits of transportation systems.

Another issue affecting the choice of transportation methods are the constraints they impose on their cargo. The
mass-driver operates on blocks or pellets, while the other options allow other cargo shapes (such as rods, slabs, powder) which may simplify the SMF input systems.

Finally, as mentioned earlier, the necessity to avoid contamination of purified materials may significantly complicate some transportation options. All of these transpor-tation-related issues should be further investigated.

## 13.6: SMF PRODUCTION CONTROL TRADEOFFS

Within the SMF, several production control tradeoffs can have significant effects on SMF program costs. These tradeoffs affect the design of support equipment and the methods of allocation of available resources.

One tradeoff currently under assessment but requiring further study is automation versus human labor. For the supervision and operation of machinery, automated systems appear adequate and cost-effective. However, automation in maintenance and repair needs further research. Repair functions require evaluation of uncertainty; therefore automated repair systems are sophisticated and expensive devices, and human labor may well be competitive. There also exists the compromise of remote-controiled teleoperators, with the operators on Earth. Evaluation of this tradeoff requires better estimates of costs and reliability of the basic equipment, of the automated repair systems, productivity of maintenance and repair labor in space, and productivity and costs of teleoperator systems.

From the systems point of view, below a certain range of population at the $S M F$, the human labor costs are low enough that they are not significant contributors to the SMF program costs. Therefore, if automation is used to the extent that the SMF personnel total is below this range, then further use of automation dues not yield significant returns, while increasing technical uncertainty. Based on the work in this SMF design study, and other in-house studies in the Space Systems Laboraiory, the study group has located this "knee" in the program cost versus SMF population curve at an SMF population of roughly 2500 , well above the population of the reference SMF (Ref. 13.1). Since this finding involves a number of assumptions on transportation (which is the principal cost of SMF personnel) further research should refine the accuracy of these findings.

```
 A reilated tradeoff is the choice of maintenance and
repair strategies. Op+ions include repair after breakdown,
preventive maintenance, rotable spares, the use of throwaway
components. Factors affecting the choice of options include
costs of modular designs, reliability of the SMF equipment,
tolerance of the SMF production iayout to machine outages,
response time of the repair system, cost of procurement and
transportation of throwaway equipn:ent spares. Further study
of these issues is needed to determine the impact of each
repair option or SMF program costs.
```

    13.7
    Another production control tradeoff is the location of the spares inventory. If the spares are warehou.ed in space, their procurement and transportation costs occur earlier in the program, adding to discounted costs, and the SMF requires warehousing facilities. But production outages are cut down, since spares are readily available. If the spares are bought and shipped from Earth as needed, production outages from trokenequipment are lengthened, and the SMF therefore must have a larger production capacity. This brings in the issue of machine redundancy: if the system is sufficiently redundant, machine outages may be tolerable, and in-space spares inventory may be unnecessary.

All of the production control tradeoffs are interrelated, and should therefore be studied together. The challenge is to develop a production control philosophy well adapted to the economic and physical environment of the SMF.

## 13.7: WASTE REPROCESSING AT THE SMF

The reference SMF presented in this study wastes 50,000 tons of every ? 0,000 tons of material input. The solar cell factory wastes 36,000 of those tons. Therefore waste refrocessing options and low-waste design options should ve considered for the SMF. The tradeoff to be studied is between the costs of the waste reprocessing equipment (or the incremental costs of substituting low-wasted designs in the reference SMF) and the costs associated with the input materials which will be wasted.

The latter costs consist of incremintal costs of higher mining and refining output ates, larger transportation requirements from Moon to SMF, and higher material throughputs at the input end of the SMF.

On the other hand, if the waste is in a form suitable for radiation or micrometeorite shielding for space facilities (or more exotic uses such as large masses for inertial anchors), the product waste may be beneficial. The effect of this option is to reclassify the suitable waste as a useful product, and to assign a ialue to that waste. The tradeoff is then between using process waste versus unrefined lunar material for bulk shielding or other applications 13.8: SMF BUILRUP SEQUENCE

As discussed earlier for the lunar mining and refining, there may be cost advantages in setting up the SMF in incremental sections. In such a buildup scenario the early SPS's would include significant fractionsof Earth materials, which would be reduced in later outputs as the SMF becomes able to produce more components from lunar materials. This scenario has the disadvantage that it requires setting up earth manufacturing systems (for SPS components) which may be difficult to convert to production of earth outputs as the SMF is upgraded. However, the scenario a'so spreads the uffront costs of the program over a larger period, provides earifer economic returns, and $r \in d u c e s ~ t e c h n i c a l ~ u n c e r t a i n t y ~$ by learning from the initial setup. Evaluation
13.9
of these tradeoffs should include study of transportation and lunar base systems also , since a stepwise buildup of SMF capability suggests stepwise buildups of those system elements as well.

## 13.9: LOCATION OF FACILITIES

There are several possible orbital locations for the SMF, e.g. Inw-lunar, geosynchronous, Lagrange-point, resonant, highearth. Choice of location for the SMF should be done by an overall systems analysis of the tradeoffs involved. For example, a low-lunar orbit reduces the velocity increment required between lunar surface and SMF. This is an advantage because the materia? wasted by the SMF does not nave to travel to a higher orbit; however, the amount of this savings depends on the choice of transportation systems. On the other hand, locating the SMF in low-lunar orbit stretches the logistics and personnel routes between Earth and SMF; that cost increment also depends on the choice of transportation system, and the suurce of propellant (earth or lunar).

The SMF location tradeoffs also involve the eventual destination of the SMF products. For example, locating tre facility in geosynchronous crbit could reduce the cutput transportation requirements, if the satellite assembly stations are also in GSO. Since this transportation requires more expensive packaging than the lunar-SMF transportation, this option can reduce costs.

In general, many of the facilities in the ? unar material scenario (lunar base, transportation transition points, SMF, assembly stations) have alternative locations, and the associated tradeoffs involve transportation costs, equipment design, availibility of energy, stationkeeping, worker safety, propellant and material sources. An everall systems analysis, including computer modeling and preliminary desijn of options, is neaded to optimize the scenario.

A related set of tradeoffs is the location of individual processes. For example, material refining could be done in space rather than on the Moon. This tradeoff involves relative costs of equipment, transportation costs between the two locations, and the relative costs $0^{\circ}$ maintaining and transporting personnel. Since logistics and personnel transportation to an orbital SMF is cheaper than to the Moor, this suggests that the lunar base should be kept as simple as possible; however, refining at the $S M F$ requires transportation of larger quantities of lunar materials to the SMF. Furthermore, zero-g refining equipment is likely to be different than lunar equipment (including differences in power supply or power storage requirements), and will therefore have different costs. Similarly, some processes could te done on the Moon (slab or ribbon production) or at the satellite assembly sites (component subassembly) rather than at the SMF. These tradeoffs irvolve orbita! locations, transportation capabilities, earth-material requirements, alternative equipment designs.

## CHAPTER 14

## CONCLUSIONS AND RECOMMENDATIONS

## 14.1: CONCLUSIONS

1. The space manufacturing facility is technically feasible, in that a facility can be built which can turn lunar materials into the required outputs. Such a facility can be operated in space on a continuous basis.
2. The production operations of the SMF appear versatile, in that the facility can produce a wide variety of prodects, from structural members to solar cells to klystron assemblies. The study group concluodes that a wide range of satellite components can be manufactured in space, without extensive modifications to the reference SMF.
3. The SMF concept is also flexible, meaning that space manufacutring facilities can be designed for a wide range of production rates. For example, a small solar-cell production operation can be set up by using a small number of production strips. Most of the reference SMF can be scaled up or down, and operated over a range of regimes. Thus commitment to the use of an SMF does not entail commitment to a large output rate; small SMF's are possible.
4. The reference SMF also appears productive, in that it produces a yearly output with roughly ten times the mass of the production equipment. It should be noted that roughly $45 \%$ of that output is solar cells, which currently have a far lower (output rate)/iproduction equipment mass) ratio.
5. The space environment can improve industrial operations, provided that the SMF processes are chosen and designed to take advantage of the characteristics of space, specifically the readily available vacuum and energy, and the low-stress environment of zero-g. The SMF environment, both physically and economically, is different than Earth's and in many cases beneficial.
6. Evaluation of the lunar-material option requires more in-depth systems studies, trading off the various scenario parameters (e.g. characteristics of lunar base, transportation systems, SMF, assembly station, and output SPS).
7. Technology demonstration programs are needed to verify suggested processes. In-space prototypes need not be large, but can benefit from a permanent orbital platform.
8. Based on 1 SPS/year the SMF will require non-recurring costs of $\$ 11.6$ billion including $R \& D, p r o c u r e m e n t$, transportation and power supply. Annual recurring costs of $\$ 1.2$ billion will be required and an operating crew of 440.

## 14.2: RECOMMENDATIONS

1. Conduct systems tradeoffs outlined in Chapter 13 leading to an optimized space manufacturing scenario using lunar materials.
2. Design a smaller, near-term, technology demonstration space manufacturing facility using terrestrial material inputs, possibly located in LEO, including appropriate elements of the technology evaluation program outlined in Chapter 12.
```
3. Examine the possibilities of using space specific processes to manufacture products competitively for terrestrial consumption. Several such candidate processes have been identified by this study.
```

14.3

## REFERENCES

(7.1) Computer Numerical Control of Electron Beam Machining Equipments, Proceeds of IFAC/IFIP 5th International Conference, June, 1977.
(7.2) The Klystron as a Microwave Power Source in the Solar Power Satellite Application, Prepared for the Boeing Company by Varian Associates, Inc., Palo Alto, CA, November, 1977.
(7.3) Belt for Transmitting Power from a Driven Member to a Driven Member, Bahiman, H., NASA Goddard Space Flight Center, Contract \# N78-32435.
(7.4) Bahiman, H., NASA Goddard Space Flight Center, personal communication, August, 1979.
(7.5) Microwave Power Transmission System Studies, Vol. 2, Raytheon Co., Equipment Division, NASA Lewis Contract $\begin{aligned} & \text { NNAS } \\ & \text { 3-17835, December, } 1975 .\end{aligned}$
(7.6) "Laser Cutting -- Its Future Potentials", Journal of the Apparel Research Foundation, 5(1), 1-40, 1969.
(7.7) "Derivation of a Total Satellite Energy System", Woodcock, G. R. and Gregory, D. L., AIAA paper \#75-640.
(8.1) Temperature Measurement Technology -- Sensor Techniques and Instrumentation, MacKenzic and Kehret, International Instrumentation Symposium, San Diego, CA, May, 1975.
(8.2) "The Highs and Lows of Temperature Monitoring", Hall, J., Chilton's Instruments and Control Systems.
(8.3) Handbook of Thin Film Technology, Maissel, L.I. and Glang, R., McgrawHill, New York, 1970.
(9.1) Horn, Prof. B. K. P., Artificial Intelligence Laboratory, MIT, Cambridge, MA, personal communication, July, 1979.
(9.2) No reference.
(9.3) Exploratory Research in Advanced Automation, Second Report, Rosen, $C$ Nitzan, D., Agin, E., Anderson, E., Berger, J. Hill, J., et. al, Stanford Research Institute, Henlo Pa , CA, August, 1974.
(9.4) "Research on Advanced Assembly Automation", Nevins, J. L., and Whitney, D. E., in Computer, December, 1977.
(9.5) "Vision Review", Working Paper \#157, Horn, B, K. P., Artificial Intelligence Laboratory, MIT, Cambridge, MA, May, 1978.
(9.6) $\frac{\text { A Prototype Intelligent Robot That Assembles Objects From Plan Drawings, }}{\text { Ejiri, M., Uno, T., Yoda, H., Goto, T. Takeyasu, K., Central Research }}$ Laboratory of Hitachi Ltd., Tokyo, Japan, February: 1972
(9.7) Exploratory Research in Advanced Automation, Second Report, Rosen, C., Nitzan, D., Agin, E., Anderson, G., Berger, J., Hill, J., et al, Stanford Research Institute, Menlo Park, CA, August, 1974.
(10.1) R. H. Miller and D. L. Akin, "Logistics Costs of Solar Power Satellites", IAF Paper 78-186, October, 1978 (Also SSL Report 3-78).
(10.2) A Forecast of Space Technology 1980-2000, NASA SP-387, January, 1976.
(10.3) D. B. S. Smith, ed., A Systems Design for a Prototype Space Colony, MIT, Spring, 1976 (Appendix VI.A -- "Radiation Shielding").
(10.4) J. B. Kendrick, ed., TRW Space Data, TRN Systems Group, 1967.
(1n.5) Mary L. Bowden and David L. Akin, "Underwater Simulation of Human Dynamics and Productivities in Extra-Vehicular Assembly", IAF Paper 79-109, September, 1979 (A1so SSL Report 12-79).
(11.1) Lunar Resources Utilization for Space Construction, General Dynamics, Convair Division, NASA Johnson Contract NAS9-15560.
(11.2) Bradley, Hax, and Magnanti, Applied Mathematical Programming, AddisonWesley, Reading, MA, 1977.

## ADDENDUM I <br> DIRECT VAPORIZATION EXPERIMENTS

## 1.1: INTRODUCTION

The reference SMF design used Physical Vapor Deposition (PVD) as a key process in the fabrication of solar cells. In this process, atoms "boiled off" from source material (such as slabs of silicon) are deposited onto an exsisting surface, forming a "top" layer of new material. It is this layer by layer build up of materials which forms the solar cell (see Chap. 6).

PVD, or OV (direct vaporization), was selected for the SMF for the reasons discussed in full in Chap. 5. When considering the $D V$ options, it was found that literature search and consultations with experts were insufficient to obtain the information required for detailed equipment designs. This was because the literature is very scant, expert opinions are limited by proprietary restrictions, and those expert opinions avai’able contradict each other on significant factors, such as the relative effects of deposition rate and surface temperature, and the required annealing times and temperatures. Thus, the study group decided to perform experimental work on the DV of silicon and silica $\left(\mathrm{SiO}_{2}\right)$. This work had three purposes: l) to investigate the feasibility of using DV for the various SMF processes, 2) to study the specific conditions necessary for the operation of the $D V$ processes, and 3) to
indicate the directions for future research, appropriate to the SMF DV processes.

The requirements for silicon deposition in the reference SMF are high deposition rates ( 4 microns/min) and columnar grains of 100-200 microns diameter (after processing). The technique used in the reference design involves deposition of a polycrystalline or amorphous silicon layer followed by a recrystallization process. As discussed in Chap. 5, direct vaporization cannot alone produce a monocrystalline silicon wafer. Some sources in the literature suggested estimated maximum practical deposition rates of .5 microns/min and suggested that a deposition surface temperature of $1200^{\circ} \mathrm{C}$ was necessary to get a crystalline deposit. If these estimates were accurate, the deposition section would require con. siderable lengthening, and the deposition temperature would destroy the rear aluminum contact. More specifically, the deposition process should be limited to a temperature low enourl: so aroid any significant diffusion of aluminum into the sioicon ithe Si-Al eutectic temperature is $578^{\circ} \mathrm{C}$ ). The study $\dot{y} \cdot \boldsymbol{b}$ : therefore needed to obtain quantitative information ajoui tre relationships between deposition rates, substrate temperature and the morphology of the deposited layer (particularly the grain size).

In these experiments, silicon and silica were vapor deposited onto 6061 alumirium alloy in a vacum chamber. The
power source fcr the experiments was a 6 kW Electron Beam gun. The tests investigated the effects of beam power on deposition rate, deposition rate on grain size, and substrate temperature on grain size when depositing silicon onto aluminum, and attempted to deposit silica onto an unheated aluminum substrate. 1.2: APARATUS
1.2.1 Deposition Equipment: A schematic representation of the equipment used in the vapor deposition experiments is shown in Fig. I.1. The apparatus may be divided into three sections: the vacuum system, the evaporator, and the substrate assembly; each of these is described below.

The vacuum system consists of a stainless steel chamber (with 2 lead glass viewing ports), a mechanical roughing pump, two oil diffusion pumps, and bourdon and ion pressure gauges. For these experiments, typical working pressures were in the low $10^{-6}$ Torr range.

The evaporator system consists of an electron beam gun, a magnetic deflection system, a power supply, and a lined hearth containing the source material (see Fig. I.2).

The electron beam gun consists of a tungsten filament cathode and a ground piate (which serves as an anode) which produces a stream of electrons directed verticaily from the gun. An electromagnet is then used to "turn" the beam through $180^{\circ}$ and direct the electrons towards the source material in the hearth. The gun is connected to a $10 \mathrm{kV} / 6 \mathrm{~kW}$ power supply


FIGURE 1.1: SCHEMATIC OF EXPERIMENTAL SET-UP


## FIGURE 1.2: APPARATUS FOR

" $\triangle P O R$ DEPOSITION EXPERIMENTS
outside the vacuum chamber via high voltage vacuum feed throughs. The power supply allows some control over the way in which the source material is evaporated. First, a "position" control adjusts the electromagnetic field which deflects the electrons, allowing any point in the source material to be placedin the "focus" of the beam. second, the input current into the gun may be varied, allowing variation of the the level of energy input into the source material. Third, a sweep control allows the beam to be swept across different proportions of the source material surface, giving a distributed energy input ac:oss the silicon surface.

The high energies involved mean that both the electron beam gun and the hearth containing the source matrial must be actively cooled by a water system. As can be seen from the figure, the gun and hearth are incorporated into a single unit requiring one inlet and one outlet pipe for the coolant.

The material to be deposited is placed inside a machined - graphite crucible which acts as a liner for the hearth. Semiconductor grade silicon and quartz crystal, crushed into small pieces, degreased and cleaned, were used in the deposition experiments.

As shown in Fig. I. 2 a nickel "guard" was built around the power lines and feed throughs in order to stop vaporized silicon from depositing itself onto the high voltage leads and causing a dangerous short circuit. Mounted on the guard was a mirror, angled to clow an observer at one of the windows to see the source material.

The substrate assembly system consists of a substrate holder, substrate heater, and thermocouple, all mounted on a spindle (see fig. I.2). The spindle allowed the substrate assembly to be rotated in the horizontal plane so that the substrate was only positioned above the source material during the actual deposition.

The substrate holder was a mica sheet with a $2 \mathrm{~cm} \times 2 \mathrm{~cm}$ square cut out of the center. The aluminum substrate (a polished disc 46 mm in diameter) was positioned over the hole
and fastened to tie mica by a steel strip. The mica was, in turn, fastened to the bottom of a steel frame which held a radiative heater directly above the substrate.

The substrate heater, used to control substrate temperature, consisted of thin tungsten wire wrapped around two aluminum rods. Two steel foil shields were positioned above the wire in order to deflect more energy onto the substrate. Power was supplied to the heater by a DC Variac unit outside the vacuum system.

A thermocouple, with one junction clipped to the substrate, was used to monitor substrate temperature.
I.2.2 Sample Analysis Equipnient: In the silicon wafer of a solar cell, grain boundaries tend to inhibit the motion of charge carriers, and thus reduce cell efficiency. Therefore, an important measure of the quality of a silicon wafer is the average grain diameter. The deposited silicon films were analyzed to determine film thickness and average grain diameter.

Film thickness was measured using a Dektak; this machine measures the displacement of a diamend stylus which rides over the edge of the deposited film. Deformations in the substrate can lead to false readings, ard so this method is limited to use on flat substrates (those showing less than . 5 micron fluctuation across the substrate).

Average grain size was determined from micrographs taken using a scanning electron microscope (SEM). Average grain
diameters were calculated by averaging several observed and measured grains -- films with no observable grains were considered amorphous. The SEM was also used in determining the thickness of de, osits made onto substrates too deformed to use the Dektak. In this process, the sample was sliced, and a photograph of the cross-section taken through the SEM. The approximate film thickness could then be determined from the photograph.

## 1.3: EXPERIMENTAL PROCEDURE

In producing samples of deposited material, the study group followed the procedure outlinec below.

The vacuum system was pumped down to the operating pressure -- in the low $10^{-6}$ Torr range -- and the EB gun switched on and adjusted to ne? the material to be deposited (silicon or silical. Once the material was melted, power to the electr^n gun was adjusted to begin the vaporization process. Once vaporization nad begun, the substrate (pre-heated to the desired temperature) was swung into position over the hearth. Deposition was allowed to continue for a measured time (typically 30 minutes), after which the system was shut down, and the sample removed for analysis.

## 1.4: RESULTS

The sests were explorator, 1 nature and conducted for the purpose of very preliminary investigations of the vapor
deposition process. The time and equipment ayailable precluded the production of a large number of measurable samples in this series of experiments. The results presented are, therefore, very rough estimates of possible performance, mainly confined to the effects of defosition rate on the grain structure of deposited silicon.

Table I.l lists the measurable samples produced and their associated properties. A few of the samples produced were sufficiently deformed by thermal stresses (having been allowed to cool too rapidly after completion of the deposition process) so that they could not be analyzed; these sanples are not listed.

TABLE I.I: SAMPLE MEASURMENTS

Sample   Number	Deposition   Rate $i \mu / m i n)$	Substrate   Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Average Grain   Diameter $(\mu)$	
5	0.29		510	0.4
8	0.25		505	0.44
9	0.04		500	1.04
11	0.83	1.1	500	amorphous
16	0.15	500	amorphous	
			450	0.22

Figure 1.3 is a micrograph of sample number 3 at $3000 x$ magnification. This is a polycrystalline sample, with each 01 the grains appearing as the small circles on ihe photograph.

$$
1.9
$$



## FIGURE I. 3 : POLYCRYSTALLINE SILICON DEPOSIT

Figure 1.4 is a micrograph of sample number 11 at $5000 x$ magnification. This is an amorphous sample with no visible grain structure.


FIGURE 1.4: AMORPHOUS SILICON DEPOSIT

1. 10


Figure 1.5 is a plot of grain size vs deposition rate for samples 3-11.


## FIGURE I.5: AVERAGE GRAIM

DIAMETER VS DEPOSITICN RATES
A single attempt was made to deposit silica onto an unheated substrate by direct vaporization. After melting, the silica began to vaporize and a coating was deposited onto the aluminum. During the deposition process (a period of 15 min.$)$ the substrate temperature rose through $215^{\circ} \mathrm{C}$. With any thermal control, the stresses set up during cooling were sufficient to make the silica deposit separate from the substrate. 1.5: DISCUSSION OF RESULTS

From Table I. 1 and Figs. I. 3 and I. 4 it can be seen that two types of deposit were made -- polycrystalline and amerphous. The amorphous deposit is in a higher potential energy configuration than the lattice structure of the polycrystalline
deposit. Thus, in a recrystallization process, such as that used in the reference solar cell factory design, an initially amorpious deposit of silicon may be a better starting point than polycrystalline one. This is an area in need of further research.

Figure 1.5 shows that, for silicon deposited onto Al, the average grain diameter decreases with an increase in deposition rate. As the silicon atoms are initially deposited onto the substrate, a series of randomly oriented nucleation sites are formed. If there is sufficient time, the nucleation sites coalesce into a few large nucleation sites. The rate at which atoms are arriving at the surface initially determines the number of nucleation sites formed. Subsequently, as atoms arrive at the deposition surface they require a finite amount of time to find a vacancy in the developing lattice structure. As the rate at which the atoms are arriving is increased, there is less time for each atom to locate a vacancy, and some of the vacancies remain unfilled. Therefore, if the deposition rate is low, the atoms initially have time to coalesce and form a few large nucleation sites. Subsequent atoms fill most available lattice points at these nucleatioll sites and the grains grow outwards until they meet grains of different orientation -- thus determining the grain sizf. If the deposition rate is higher, initially many
nucleation sites are formed leading to the growth of smaller grains. If the deposition race becomes sufficiently high, the atoms have insufficient time to assume a crystalline structure before subsequent atoms arrive and bury them -- this is an amorphous deposit.

The test to deposit silica by direct vaporization gave two results. First, it showed that silica may be deposited by direct vaporization. Second, it showed that there is a need to exercise thermal control over the substrate (to prevent the development of thermal stresses such as the ones encountered in the experiment).

## 1.6: CONCLUSIONS AND RECOMMENDATIONS

1.6.1 Conclusions:

1) Direct vapor deposition of either polycrystalline or amorphous silicon is feasible.
2) For silicon, an increased deposition rate tends to give a reduced average grain diameter.
3) Direct vaporization of silica is feasible.
1.6.2 Recommendations for further study:
4) Investigation of the requirements for optimum recrystallization (see Chap. 12).
5) Further investigation of the conditions for deposition of silicon unto aluminum. of interest are the effects of sutstrate temperature, substrate morphology, and vapor pressure on the grain structure of the deposited silicon.
6) An investigation of the optimum conditions for the direct vaporization of silica.
I. 13

## ADDENDUM II

## AUTOMATION AT THE SMF

## II. 1 INTRODUCTION

This automation addendum provides an explanation of how the designer should approach the configuration of the computer resource, using the solar cell factory (SCF) as an example. The philosophy presented is applicable to most of the other sections of the SMF.

A description of the free-flying hubrid teleoperator
(FHT) remote repair system appears in Chapter 9, "Maintenance and Repair", because this is one of the principal repair devices used in the solar cell factory. Quality control sensors and the strategy for keeping inventory of factory materials and components is presented in Charter 8, "Support Equipment Specifications". These items are therefore not covered in this addendum, although they irvolve issues of automation.

## 11.2: GEMERAL CONCEPTS CF AUTOMATION

Because technology is moving so fast, one cannot accurately predict what computer capabilities will be just one decade into the future (Ref. 1,2); however, were advances in computer technology to halt today, the current state of the art is cause enough to make the computer resource a major consideratior in space system design.

Recent advances i i iarge scale integration (LSI)
technology have changed the economics of computer system
design and have led increasingly to the use of extremely small, inexpensive, yet powerful processing elements (PE's).
Computers in the 1990's resulting from the certain advances in integrated cilcuit (IC) technology will be available to the SMF designer for information storage, quality control, diagnosis of plant equipment, component control and coordination, and for the operation of teleoperators and crawlers. Decisions concerning the role of computers in components of a space system should not be relegated to the detailed design phase of the project, because such an approach would lead to lack of commonality between computer subsystems, reduced maintainability, and an inability to attain needed levels of fault tolerance (Ref. 3).
The computer resource for the Solar Cell Factory (SCF) is to be targeted for use in two areas of industrial automation: manufacturing control and robotics (Ref.3). Manufacturing control applies automation to the tiresequenced manipulation of the geometries of raw . rials under computer supervision to form parts that are then assembled. A robot can be defined as a mobile manipulator not requiring the constant direction of an operator. Clearly, the SCF crawlers and teleoperators fall under this latter category. A description of the solar cell factory robots and the automated functions of the teleoperators is presented in Chapter 9.
II. 2

Standardization of the hardware and software of the computer resource will help reduce system complexity and cost. This commonality would have obvious benefits if the computer resource were geographically distributed in the SCF. Taking an even wider view, on the scale of the SMF itself, Matelan (Ref. 4) suggests that the computer resource of the SCF and the habitat be designed as if they were joined so that if for some reason the connection is needed, such a task could be accomplished with ease.

All computers, whether fixed or mobile, are designed from the beginning to make them function as integrai members of the resource. The computer resource should be thought of as a major system component itself, rather than as a group of elements in other components. This coordinated integration of computing power, cutting across subsystem boundaries, could be a unifying force in the overall design of a space manufacturing and habitation facility.

This addendum suggests the adoption of a distributed computer control scheme for the SCF. Ramamoorthy and Krishnanao (Ref. 5) define a distributed computer system as "an interconnection of digital systems called Processing Elements (PEs), each having certain processing capabilities, which are spatially either close or far apart, communicating with each other through a common memory, a bus or a communication line, and having either apparent or hidden hierarchical levels of control."

The adoption of a distributed control strategy must be justified for the application under design, the SCF. Ref. 6 suggests the following criteria which the application environment must satisfy to justify a distributed computer configuration:
(l) The application is amenable to logical division into autonomous units.
(2) The data collection and reduction functions are distributed in space.
(3) The resources required for a subset of functions can be predicted.

The first criterion can be seen to be satisfied upon examining Figure 6.8 illustrating the manufacturing process of the SCF. In this case the various machines could be considered the autonomous units. Data collection and reduction will occur locally at the component/machine level and the information will be made available periodically to the higher levels of control. The system is defined well enough so that the necessary means for control can be estimated.

The designer may be tempted to adopt a central computer to control all aspects of the facility; however, a comparison between a distributed computer resource and a central computer shows that the distributed approach has distinct advantages making it the more attractive choice. The uso of one computer would require a complete backup in case of a computer failure--an expensive arrangement.

With a distributed configuration the failure of one PE will not shut down the entire system, and in addition, the computer resource can be designed to reconfigure itself around a failed processor.

This dispersed system makes early subsystem checkout and fault tracing easier to accomplish. The modular nature of the distributed system simplifies the hardware and software by dividing the system into units of manageable complexity and allows for easy tailoring of the computer resource to the application. A system with distributed PE's can be easily expanded without modifying the entire facility, while expansion of capabilities and modification of programs can be quite cumbersome in a central computer. Interestingly, the direct costs of a single, powerful central processing unit and its software are higher than the combined costs of multiple, lower-power central processing units and associated software that together provide equivalent performance (Ref. 7), The most important step in the design of a distributed computer architecture that matches the application is the definition of the process and the possible failure modes of that process, i.e. one must know what is to be controlled before deciding on a control scheme (Ref. 8, 2, 10). This definition must include the normal functions of a component, assorted monitoring functions, the coordination of the components of a machine, the coordination of the machines of a strip and the coordination of 14 strips to form a package.
II. 5

What needs to be coordinated will become obvious when the objectives of the facility are examined. Further, the modes of failure at all levels should be predicted, as well as the amount of time between the occurrence of a failure and when it is corrected. One should examine how long a process can continue within tolerable limits while it is not being controlled and what the "regret" is to the facility of completely losing a particular component/machine. How the process will be safely started and stopped is a very imporiant matter $: 0$ address. From this analysis the designer should be able to detect decision points in the control struc.ure, e.g., when part of a strip should be stopped or when a crawier/ teleoperator should be alerted for a epla ment or repair job. Here the designer should realiz .t Eunctions which inherently lend themselves to centralized $\because$ ision, like those mentioned above, should not be distributed (Ref. ll). This careful analysis of the application will juide the designer to the correct architecture and thus lead to the design of a successful distributed system.

The designer is now corfronted with the question of processor interconnection schemes, and thus with one of the most difficult issues in configuring the computer resource. Interconnection strate, ies will have to be dealt with at all levels of the hierarchy. Ref. 12, which discusses these issues at length, presents this important facet of the design under three broad categories:
(1) Physical aspects of the configuration
(2) Control and communication issues
(3) Reliability issues

The distributed systems research indicates clearly, though, that the three categories listed above cannot be considered alone: they impact each other. Here, again, the careful analysis of the requirements of the facility mentioned earlier will be the best guide to the designer on how these three issues should be resolved.

This addendum presumes that each component within a machine will be controlled by its own processing element, e.g., a microprocessor with sufficient memory and processing power to adeqiately regulate the component and also interact with the higher levels of control. The designer has the option of either physically imbedding a microprocessor into a component, which would simplify the interfaces between the processing element and the component instrumentation (Ref. 10, 13), or of putting all the microprocessors of a particular machine on a common board near the machine, which would facilitate replacement and repair of the processors (Ref. 11).

Ref. is, the classic study of the taxonomy oi interconnected computer networks, lists the advantages and di:advantages of several computer networks. How well a microprocessor is programmed and interfaced as part of an integral control system determines whether a particular microprocessor's advantages will be realized (Ref. 15). Further, maintaining II. 7
microprocessor homngeneity throughout the system will enhance the design of an integrated coinputer resource that is fault recoverable.

The designer should be aware of the special conditions in earth erbit and in the SCF itself so that appropriate processing elements and bus lines can be chosen that will not degrade in such an environment.

## 1I. 3 COMPUTER CONTROL SYSTEM REQUIREMENTS

The kind of coordination and communication necessary for the SCF may become obvious with the following example. Tables 1 and 2 show simple breakdown of :*ncl functions of the direct vaporization of aluminum -

Intercommunication needs betineen -or:' .' : processing elements are minimal; however, the component, $u$, machine will need to be coordinated to meet the objectives of that partícular machine. fhis could be accomplished by a masine processing element dedicated to overseeing the shutdown and startup of the components, alerting the level of control above it, the strip controller, that an intolerable condition in that machine has been encountered, and transferring data.

The application clearly reveals the requirement for a strip control $\{$ see Figure 6.8j. The strip controller wilf *e need d to halt all the machines prior to the panel align-me.r- -". insert machine if any one of these ceases to operate because of an intolerable condition. Further, with these machines shut down, the panel insert machine must be alerted

## TABLE II. 1

## DV OF AI. MACHINE COMPONENT COHTROL FUHCTIONS

```
EB Gun
 power, current, voltage levels
 filament feed mechanism. filament use
 Deam direction
 machinery healin
Slab Feed
 rate of fres
 slab cc :tion
 need fo. ...ure stock
 machinery health
Thick is Monitor
 data gathering
movement zcross width of belt
machinery health
```

TABLE 1I. 2
DV OF AL MACHINE CONTROL

Messages Received
from component control

- need for replacement or non-urgent repair
- notice of intolerable condition
- data

Messages Given
to component control to strip control

- component(s) start-up
- componer.t(s) shutdown
- confirmatinn of messages received
- need for replacement or non-urgent repair (teleoperator/crawler)
- notice of intoler ble condition
- data
11.10
to start providing spare panels. The appropriate teleoperator would then be alerted to redress the anomalous cordition. A similar situation would occur with machines past the panel insert zone except that the panel insert machine would start collecting good panels from the previous machines. This instance also revea's the need for a higher 'evel of control, namely a package stition control, because when one of the production strips past the panel alignment and insert zone is stopped, this will require all fourteen strips past the insert zone to halt, unless a missing strip in a package can be tolerated. The above illustrates why central processors could be imporiant at variods levels within the computer resource hierarchy.

With respect to communication in a distributed computer resource, Ref. 16 gives the fnllowing explanation: "The key to distributed systems is the establishment of communications. In general, the serding of a message is equivalent to transmitting energy, and it is desirable to minimize the system energy. To put it another way, it is desirable to transmit a minimun amount of information, consistent with function, within and between systems. The distributed system is fundamentally intended to minimize transmission of information."

When unschedulad events like malfunctions occur requiring the ' ing of machine(s), an inierrupt in the programs can he employed that stures the state of the task 11.11
in progress until the problem is rectified. Further, Ref. 18 suggests the use of an interrupt in all processors every few williseconds to coordinate the timing of all functions in the system.

The designer will eventually need to decide how often local information, whether it be quality control data, e.g. thickness, composition and temperature, or a rundown on the state of a machine, should be provided to the higher levels of control. In general, the designer should move those functions that are done most frequently down the hierarchy, and those done less frequently up the hierarchy.

The communication paths in the SCF will most likely be exposed to a hostile environment that could garble messages. Use of optical communcation paths may be attractive for this type of environment. Ref. 17 notes procedures for adding redundant bits to a message so that the receiver can detect an error in the message on its arrival. Some schemes not only detect errors at a receiver, but also correct them.

The analysis performed on the application should also examine the "regret" of losing a particular component/ machine so the designer will have some idea about those functions requiring the greatest reliability.

One approach to making the usstributed computer sygtem more reliable is by simply fuplicating the microprocessors wherever they occur, whether at the component level or at one of the control levels (Ref. 4, 17). Tnis
philosophy could extend to sensors and communication buses as well. One of the two processors would operate in a standby mode, ready to take over in the event of a failure. To decide when a processing element has failed, though, is not easy, and generally one cannot relj on the module itself to announce that it is failing (Ref. 12).

Another approach to making the system more reliable is to reconfigure the computer resource when a failure of a processor occurs. Reconfiguration is characterized by the abilit: of a system to adapt itself to changes in its status and to provide a variable organization. This could be accomplished with spare micr processors strategically located throughout the computer hierarchy, e.g. one spare frocessor for each machine (Ref. 2, 18). When a processor has been determined to fail, the appropriate spare would then assume its load until the necessary replacements had been made.

A reconfiguration strategy can be determined prior to the execution of a job based on predicted failure modes-this is known as static reconfiguration. Dynamic reconfiguration strategies could also respond to predefined situations, but would take into account the current status of the system. This latter reconfiguration scheme can complicate the software and the amount of processing needed, or as Ref. 12 explains, "...dynamic reconfiguration involves high overhead and may be restricted to the cases where reconfiguration is a must (e.g. failure modes), or to the
cases where the overhead to determine a reconfiguration strategy is tolerable."

Some combination of duplicating processors and using spares at various levels may turn out to be the ideal configuration. A preliminary analysis of tle SCF indicates that the greatest reliability will be needed at the panel insert machine, a "buffer" which can store good and defective panels and also provide spare panels when needed.

Even if the designer adheres to a simple and consistent design of the computer resource for the SCF, in all probability the software will be the most unreliable part of the configuration (Ref. 4). Bishop (Ref. 20) suggests the use of a simulation program to model the communication links between processors. If the model is realistic, the program should be able to detect and diagnose real-time software errors in the network.
II. 4 EXAMPLES
11.4.1 Example of An Automated Control Computer Structure:

As is clear from the discussion of section II.2, it is extremel; difficult to predict advances in computer technology a decade ahead. However, the current state of the art and the promise of improved capabilities (e.g. high-density integrated circuits, hologramic storage, vision, voice actuation) make computers a major system element in space hardware design. A computer struciure at the space manufacturing facility can be 11.14
used for automated control of machinery, inventory, routing, maintenance and repair scheduling, monitoring, quality control. Computers could also be useci in robots, defined here as machines capable of deiling with some uncertainty in their environment.
11.4.2 Example of An Automated Control System: The basic requirements of computer structures at the SMF can be summarized as follows, based on the discussions of sections II. 2 and II.3. The system must provide loralized functions (monitoring, control, quality control) to a large number of machines spread throughout a large volume of space. The system must also prov a intermediate functions (maintenance and repair schedsling, routing) to machines and groups of machines. The systrm must provide centralized functions to the entire SMF or :o major sections of the SMF (inventory control, resource allocation, factory status monitoring and display). Finally, the entire system should be reprogrammabl?, to adjust for variations in production requirements. A single computer, tied to all sensory and control systems in the factory, has several disadvantajes. First, most sensor systems and many control systems send out or receive analog signals, which are less reliable than digital signals. Therefore the marhines should include analog/digital conversion devices and use digital communications with the master computer. Ecrond, there is a critical need for damage tolerance in the $\therefore \quad$, ystem, since a failure in the master computer could 11.15
lead to extensive damage in the suddenly uncontrolled factory. This argues for a fully redundant computer system or a set of decentralized emergency control units. The transition from primary master computer to a backup master computer can be a very delicate operation, especially if it requires the transfer of large amounts of information; it also requires a sophisticated arbitration system to decide when the primary computer is malfunctioning and to order the switch. Third, such a master computer would be very difficult to reprogram, due to the complexity of its algorithms. Thus even a minor change in production requirements could require a complex reworking of the control system. Fourth, the input/output systems of the master computer would have to handle very large amounts of data.

These criteria suggest a distributed computer structure consisting of several levels of centralization (localized, intermediate, centralized) with increasing levels of sophistication. The system should be connected by a network of communications paths, along which can travel sensor data, control commands, status information, emergency requests, reprogramming commands, and blocks of memory.

An example of such a computer structure for the solar cell factory appears rig. II.l. At the local machine leve?, microprocessors (labeled A1, A2, A3,...B1, B2, B3,...) handle the functions necessary to the machine's operations (e.g. monitoring and diagnosis, control, quality assurance). The II. 16

A series watches over one production strip, the B series over another, etc.

Each se, of microprocessors on a strip is tied to each other and to a "strip host." The strip host contains in memory all the software used by the strip microprocessors, as well as diagnostic programs. It can therefore monitor the proper function of the microprocessors, and correct software malfunctions. In addition, the strip host arbitrates hetween the requests for assistance of the microprocessors, and assigns the computer resources available. The strip host also regulates commuications between the strip microprocessors and the other computers in the network.

The 14 strip hosts in a section of 14 production strips are tied to each other and to a section control computer. Based on information from the strip hosts, the section conirol schedules maintenance and repair. It also monitors the strip hosts and reprograms them as needed.

The 19 section control computers (for the solar cell factory's 19 production sections) are tied to each other and to the main solar cell factory control facility, which includes computers and human supervisors. This facility monitors and reprograms the section control units, and takes over problems which the iocalized computers have found too difficult.

Although Figure II.l shows the separation between software sections of the computer structure, it does not indicate the location of the computers themselves. It is

possible to group the crmputers into clusters to simplify support services. However, this stretches the data transmission lines and increases the risk of a single physical accident damaging a substantial fractior of the computer capability. Although difficult to assess at this stage, some physical distribution of equipment seems desirable.

The most critical factor in the design of a computer system for the solar cell factory is ility and damage tolerance. Since loss of control damage sections of the factory, or at least stop producion in the affected section, the design of a fail-safe or, better yet, failoperational computer system becomes a very worthwhile effort. By comparison, the mass and power consumption of the system are not significant criteria, since they are expected to be very small percentages of SMF mass and power.

Part of the solution to the problem of reliability is the development ef long-life space-rated computer hardware. In addition the equipment should be modular and repairable by replacement oi mu ules. This repair will probably be done by automatic equipment in the solar cell factory.

However, computer units will fail, and there are several operations to make the system tolerant to such failures, as discussed in section II.3. The first option is simple redundancy, in wh.ch each unit is backed by its twin, ready to take over when a malfunction is diagnosed. The diagnosis and switch command can be done either by a comp eer
II. 19
elsewhere in the hierarchy, or the unit itself and its redundant twin can keep track of each other, comparing functions to determine malfunctions. However, the possibility of conflict between the two may require another redundant unit and majority rule on malfunctions. Such systems are in development today. One disadvantage of this option is that it requires many computers, many of which do not operate very often.

Another option is backing up a local computer with a more centralized one. This requires that the centralized computer have all the functions of the local device in menory and sufficient data lines to take over the monitoring and control functions of the local computer. One disadvantage of this system is that several failures of local computers can overload a centralized computer; however, the centralized computer can be backed up by a more centralized computer, etc. A more serious drawback is that the failure of a centralized computer leaves the local computers without backup.

Section 11.3 has discussed the concept of distributed, self-reconfigurating computer systems. These can provide "graceful degradation" and continuity in unaffected areas when malfuncticns do occur. The key concept is a priority structure which allows the system to reassign computer resources to take over the functions of malfunctioning units. The significant advance over the state-of-the-drt is that any computer in the network can be reprogrammed to take over at least some of the functions of any other computer.

This can be done by assigning each computer unit two types ef functions. The first are "kernel functions," those functions required for the normal operation of the unit. For example, microprocessor A2 in Fig.II.l has kernel functions which handle the monitoring and control of the DV of silicon in production strip A. These kernel functions are performed under any circumstances, provided that microprocessor AZ is not defective (however, the kernel functions can be reprogrammed to adjust production requirements). The second types of functions in the unit are those occasionally inserted to operate on other sections of the factory; in other words, the unit has extra capacity and capability beyond that required for its kernel functions, and that extra computation power can be loaded with other functions used to fill in for malfunctioning units.

Several examples from Fig. II.l can illustrate the possibilities of such a system. Example l: Microprocessor A3 malfunctions; strip host $A$ diagnoses malfunction, ta': A3 off-line, takes the proper functions of $A 3$ from its memory, loads half of those func*. .", into $A 1$ and half into $A 2$, and commands both of these ull..s to time-share the running of A3's machine with their own kernel functions. After these steps, the strip host sends a request for repair either to the section control or to the repair systems, and returns to normal operations. The microprocessors $A i$ and $A 2$ do their kernel functions and A3's functions as well.

Example 2: Here again, microprocessor $A 3$ malfunctions. Strip host $A$ takes $A 3$ off-line. Rather than reprogramming Al and A2 as in Example l, stip host A requests assistance from section control. Section control commands strip host $B$ to program microprocessor $B 3$ to time-share its kernel functions between its own machine and A3's machine. Since B3's and A3's kernel functions are the same, B3's capability is sufficient to run both machines. After these commands, the section control schedules a repair on $A 3$ and returr to normal operations. Strip hosts $A$ and $E$ recurn to normal operations also, except that they route information between 13 's machine and B3.

Example 3: Here açain, microprocessur A3 malfunctions. Strip nost $A$ takes $A 3$ off-line and requests assistance directly from strip host B. Strip host $B$ then reprograms $B 3$ as ir. Eadmple 2. If strip host B or microprocessor B3 is toc b:sy, strip host $A$ switches .s request to strip lost $C$, etc. Simultaneous requests from several strip hosts (though unlikely) are arbitered by section control.

Example 4: Strip host $B$ malfunctions. Section Control diagnoses this and takes strip host $B$ off-line. Section control can than either: program microprocessors 81, B2,... to take over their strip host's functions; or program strip hosts $A$ and $C$ to time-share their strif host kernel functions to fill in for strip riost B; or program other computers
(microprocessors, strip hosts, section control computers) in some combination to take over the functions of strip host B. Section control then schedules repair for the damaged unit. As thest examples show, the distributed control system has the ability to reassign the functions of any damaged unit or units to other computers in the hierarchy. The system is tinerefore very damage-tolerant. However, this requires the -vility is route data and commands from any unit to any other. iae traditional method to do this is to provide a communication line between each pair of devices. On the scale of the solar cell factory system, this would require an enormous number of data lines. A more advanced approach is to provide a smaller number of trunk lines and switchboard systems to route the information. The trunk lines need not be wires, but can use microwaves or lasers instead. This option is currently used by the telephone company for long-distance calls. A disadvantage of this option is that switchboards are slow and can be overloaded. One oftion to eliminate some switchboard systems is to attach an identification code to each transmission and send it over common data lines to all units (or a large group of units). The code cues the destination unit to absorb the transmission. The other units ignore the data. This concept requires maltiplexing the data lines to keep units from sending simultaneous messages. This in turn requires a common clock for all the units, and a set order of time increments allocated for sending. The number of messages
sent by all the units then sizes how many units can be on the same trunk line. Also, centralized computers can allocate extra sending time to local computers requiring assistance. Systems of this type are currently in development (Ref. 19).

Another advantage of the distributed control concept
is that test functions on computers can be applied by any other computer or group of computers. Therefore even the sophisticated factory control computers can be monitored by the less centralized devices.

## REFERENCES

1. Lee, Prof. Francis, Dept. of Electrical Engineering and Computer Science, MIT, personal communication, Aug. $1,1979$.
2. Toong, Prof. Moo-Min D., Sloan Schooi of Management, MIT, personal communication, Aug. 3, 1979.
3. Matelan, M.N. and Matelan, Lois H., "The Integrated Use of Computers in Space Factories," Conference on the Industrialization of Space, Oct. 1977, San Francisco, CA, GAS \#214.
4. Matelan, Dr. Mathew N., Mostek Corp., personal communication, July $27,1979$.
5. Distributed Systems, Infotech State of the Art Report, Infotech International, 1976, p. 11.
6. Distributed Systems, ?. 96
7. Distributed Systems, p. 18.
8. Paynter, Prof. Henry, Laboratory for Manufacturing and Productivity, MIT, personal conmunication, july $16,1979$.
9. Hsiesh, Dr. Der Chang, Folaroid Corp., personal communication, July $!8,1979$.
10. Hopkins, Dr. Albert, The Charles Stark Draper Laboratory, Inc., personal communication, August 6, 1979.
ll. Smith. Dr. T. Basil, The Charles Stark Draper Laboratory, Inc., personal commurication, July $30,1979$.
11. Disrributed Systems, pp. 87-93.
12. Distributed Systems, pp. 22-23.
13. Anderson, G.A., and Jensen, E.D., "Computer Interconnection Structures: Taxonomy, Characteristics and Examples," ACM Computing Surveys, Vol. 7, No. 4, December 1975, pp. 197-213.
14. Crutchley, Wayne, "The Computer and its Peripherals," Chilton's Instruments and Control Systems, Jar. 1979, pp. 63-69.
15. Gistributed Systems, F. 57.
16. Kahne, S; Lefkowitz, I; and Rose, C., "Automatic Contrcl by Distributed Intelligence," Scientific American, June 1979.
17. Lurrow, L.D., "The 'Fail Soft' Design of Complex Systems," International Conference on Distributed Computer Control Systems, 26-28 September 1977, p. 151-155.
18. Lesh, F. and Lecoq, P., "Distributed Microprocessors for Spacecraft Control and Data Handing," 1976 Hescon Technical Papers, Vol. 20.
19. Bishop, P.G., MA Multi-Processor Simulator for a Metwork of Co-operating Microprocessors," International Conference on Distributed Computer Control Systems, 26-28 Sept. 1977.

## APPENDIX

OUTPUTS
A.1: PROGRAM SMFCOST
(line item costing of smf)

LISTING<br>DATA<br>OUTPUT





$c$	```bC - befiacement pagts (KG/Yb) DC 3 I=1.ICONE```	SHFO 1600   S5?01610   SuFO 1620   SaP01630
c*	PIHD NCNRECUEKING CCSTS AND ERPAIA PABAMETEES PROA CODES (CCC 8 LAC)	SEF01640
	$C C=A C * P K O C(I F I X(C C C))$	SHP01650
	LC=SUPER(IFIX (IEC) \}	SaP01660
	1\% (LRC.NE.5.) $\mathrm{BC}=.05$ (nC	SHP01670
c*	HCT $=\mathrm{AC} \# \mathrm{BR}$	SHPO1680
c*	APGIY GO\% LIARELXG COEVE IF MORE THAN 100 D⿴ITS ARE USED	SHP01700
	IF (MCT.GE.100.) CC=CC*NCT** (-. 15) /(.85)	SHPO1710
C ${ }^{\text {c }}$	ADJUST PACCUEEMENT COSTS FOR UACHINE BELIARILITY	SHEO1720
c*		SAFO1740
c*	- $C$ CDIFICATION OP DUTY CYCLE FOR VABIATION OP PARAbETERS	SHP01750
C*		SHFO1760
	$D C 9=D C$	SMP01770
	$D C=100 . *(1 .-(1 .-D C / 100)$.$* ALPHA)$	SMF01780
C*	PRINT GOT COMYOAENT PARAMETERS AND COSTS	SAP0i790
		SHP01800
	DC: $=$ LC $* .01$	SHP01810
	LC1=DC1/100.	SHP01820
c*		SHFO 1830
(*)	begin summation of component cost factors	SHP01940
C*		SHFO 1850
		SAP01860
		SAFO 1870
		SMP01880
		SMF01890
		SAFO1900
	$\cos 75!10,3)=5 C * N C+\cos 25(10, \mathrm{~J})$	SHP01910
	$\operatorname{CoSTS}(4, J)=P C * N C+\operatorname{CosTS}(4, J)$	SMP01920
C*		SAP01930
c*	QULII ILY CUAPJNENT FAILURE PROBABILITIES to pind hachirb duty cic.	SAPO1940
C*		SHP 01950
	IF (NC.LT.1.) GO TO 3	SMFO1960
		SuP01970
		SMFO1980
3	CONIINUE	SHPO1990
C*		SmFO2000
c*	ESD CCMPORENT KEAD-IN LOCP	SAF02010
C*		SMFO 2020
	D $\mathrm{H}=\mathrm{P}$ 800	SMP02030
c*	ADJUSI CCHFCNENT HED COSTS POE. KELIABILTT EEQUIRE日ENTS, AMD ADd	SMP02040
C*	PROCESS ANC SYSTEME INTEGRATION RED COSTS	S 4 FO<0 50
	$\operatorname{cosis}(1, J)=\operatorname{costs}(1, J) /$ ALPHA*BM	SMP02040
C*	ASSUME NO MACHINE WOULD Have a duty cicle less that 50\%	SMP02070
	IP (DG.LT..S) $D Y=.5$	S8P02080
C*		SHFO2050
C*	Calculate cosm ElRhents	SHP02100
C*		SHPO2110
c*	WORKLOAD INCEEASE PACTOR DOE TO MACHINE DOUATIAE	SMP02120








```
2 3 1
```




```
 "TUTALS,)
232
 GOKMAT(1M1//, 4CX,'$5$$$555 RECUR&ING COS1S (CONT.) $$$$$$$$0// SMF04300
 +231.'OPERATING'.T53.'LXPENJADLES',T92.'EIPAIR'.T122.0TOTALS*/ SMPO4310
 *T33.'LABCR'.I4S.'YROCURPNENT'.TG1.'TRANSPCRT'.T79."LABOR', SMFO4320
 +T90.'PKCCUFEYENT', T105."TRAUSPORT'//
```



```
 +F84. 'DUTY CYC'.T97.'FEP. IABCR'.T110.'PAFTS'.T117.'CCC'.J123,'LBC'SMFC4350
 +/1
```





```
 +/)
 pCFMat(1|1.5ix. 'space nanufaciuring facility"
 */53X.'LINE ITEM COSTING pRCGRAS'
 */SOX,'M.I.T. SPACE SYSTESS LaEORATORY"
 *///5ix,"IRPug variable Specificaticar//20x.20aq
 +//ICX,'SNF GLOLAL PA&AMETERS:"//
4 0 2
 FCEMAT(% (AFCO TRANSPOLT COST ($/AG) = .F6.0.
 *T50, 'FERSCNSEL IEANSEOST COST ($/KG) =e,F6.0) SHPO4460
4 0 3
```



```
 +TSV.'IBAINIVG COST (5/PEASON) =',FS.0)
 FORAAT(" C&EW TRANSPCRT MASS (KG/OERSON) =',FO.O. SMFO4490
 +T50.'CSEW FOTATIUN FATE (TIHES/YEAH) =',FG.1)
 EC:MAT!" Crjw WAGE (5/ilM) =',F%.2.
 T *CCRSURAELES ELUM BATE (KG/EEESON-DAY) =', 86.2) SMF04520
```



```
 +250, SAF CEEEAIICNAL EEFIOD (YAS) =*,F6.0)
```



```
 TT5U,'SAE ACNEFLCUCTIUN POGER (KN) ='.E8.0)
 FCEMAT!' SME NCNRFCDUCTICN COST ($) =',F8.0.
 -ISJ. 'SME NCSEROCUCIION EXPENEABLES (XE/YF) =%,P8.0%
```




```
 ECSNA:(' NUMBEE UP MACHINES IN SME=0.05.0%
```






```
414 ELSM: :(HX, Si4,A3.7F1<.2.2(2x,F3-C))
```



```
 KG/11:ST S,FS.U.'/KG COMEONENTS = .FS.1) SMF04080
415 FC1MAT (18.S)
416 FChMAI(' cuth (yClE MuITLELIER = 'F8.3)
```



```
 + EG.'"AMITAL PCME? (KM/PHGSON)= 0,FG.1)
 FCEMA:(" !a3ITAT Es:0 (5:) = . Y12.2.
```




```
 SHP04750
 *TSO.'PhOCUAEMENT, LEVEL ',IT." = $'.86.0.'/KG') SKP04760
420 FONGAT(" GUMAN SUPERVISION (HR/HE DONG):%/
 SMPO4250
 SX,*REL = $,.t12.O)
 SnE04260
 *)
 SMF04280
 SMFO4320
 SHP04330
SMFC4350
 SHFO4390
 */53X.'LIHE ITEM COSTING PRCGRAS' SAFO4410
 SMPO4400
 SMFO4420
 SMF04430
SHPO4460
SMF04470
SHF04480
SMFO4490
SMF04502
 S4FO4510
SMF04520
 SMFO4530
 SMFO4540
```



```
 FCEMATI' SME NCNPRCDUCTICNCOST ($)=',F8.O. SMF04S70
 SMFO4S70
 SaF04590
 SMFJ4600
 SMFO4610
 SMFO4620
 SMFC4620
 SMFC4640
 SMFO4650
SMFO466n
SMF04670
```



```
SMF04090
```



```
 SMF04710
 SMFO4700
 SMF04720
 SMF047:0
SEPO4760
```



```
- T60. © CBANLER/AuTOMATIC aEPAIR = ©,E?.3)
```



```
-760. 'CEAMLER/HOMAV REPAIR =., P7.3)
```




```
+P6.0." STEIPS BEEDED FCR SOLAR CELL PACTGEY DOTY CTCLE OF ©,F6.4) SuF04840
Eac
```

SuF 04780 $54 P 04790$ SHF04800 SHFO48 10 SHFO4820 SHPO48 30 SuF 04840 54704850


4 CRLl caosscus	0.	0.	. 005	10.	25.	246.	4.
- chser	1.	20.	2.5	3.	99.9		1.
KR. Lasp gagazile	1.	. 1	0.	3.	99.9	3.	. 2
EGUIDE ROLlers	2.	. 5	0.	2.	99.9	2.	.03
csaleld	1.	1.	0.	1.	99.9	1.	0.
acell intraccunectics	0.	0.	.001	20.	15.	246.	7.
Celectacstatic weldib	1.	10.	. 5	3.	99.9	2.	.5
ciatebcounict feedes	1.	20.	1.	3.	99.9	2.	1.
ciatercciamct bcll	1.	15.	0.	2.	99.9	3.	. 75
csensces	2.	. 1	. 1	3.	99.9	4.	.01
- Vafiable Speed bCilebs	4.	. 8	.1	3.	99.9	2.	. 2
- hozok and thackimg	1.	10.	1.	2.	99.9	2.	. 5
guide kollebs	4.	. 5	0.	2.	99.9	2.	. 01
- dy Stoz optical ccier	0.	0.	.01	100.	10.	246.	13.
EB GO:	30.	25.	7.	3.	39.9	2.	1.25
cipilament magazine	30.	. 04	0.	2.	99.9	3.	. 44
cslas feedea	30.	60.	.01	3.	99.9	2.	3.
chasing device	1.	' 50.	1.	3.	99.9	2.	2.5
Ct-strip mask package	1.	5.	0.	2.	99.9	3.	. 26
C YYGEN DISPELSEE	6.	5.	. 01	1.	49.9	1.	. 25
crasel eaffies	6.	. 25	0.	1.	99.9	3.	80.
CSIEE B4FFLE	. 43	1.0	0.	1.	99.9	3.	160.
CSIDE bapfle guide	.43	2.5	.01	2.	99.9	1.	- 13
CSOFT Subiace belt	1.	3000.	0.	2.	99.9	1.	150.
cretor dity	1.	7 CO	15.	2.	99.9	1.	35.
CEND ROLlers	1.	100.	5.	2.	99.9	1.	5.
CCOOLING STSTEM	1.	550.	. 25	3.	99.9	2.	28.
EDV Of SiO2 substiate	0.	0.	.01	10.	10.	246.	13.
CEB GUM	20.	25.	7.	3.	99.9	2.	1.3
Cpilament bagazine	20.	. 04	0.	2.	99.9	3.	. 44
cslae fegdea	20.	60.	.01	3.	99.9	2.	3.
Catekinu divicr	1.	50.	1.	3.	99.9	2.	2.5
CT-S:RIP sast fackage	1.	5.	0.	2.	99.9	3.	. 25
corycien disamaser	4.	5.	. 01	1.	99.9	1.	. 25
Cfaull daffies	4.	. 25	0.	1.	99.9	3.	80.
CSIDI: Bafple	.29	1.0	0.	1.	99.9	3.	160.
cside bafile guide	. 29	2.5	. 01	2.	99.9	1.	. 13
csidet sufface belt	1.	2000.	0.	2.	99.9	1.	100.
cso:op daive	1.	¢00.	10.	2.	99.9	1.	25.
CESJ KOLler	1.	100.	5.	2.	99.9	1.	5.
CCOHLING SYSTES	1.	400.	. 15	3.	99.9	2.	20.
mpaiel alige \& Insfit	0.	0.	. 001	20.	15.	246.	7.
cacceleratof reit	1.	70.	5.	3.	99.9	1.	3.5
çariable spee chizes	32.	. 8	. 1	3.	99.9	2.	. 04
CPANEL P Emoper	2.	25.	. 7	2.	99.9	2.	1.25
cpansl insl or	1.	25.	. 7	2.	99.9	2.	1.25
Ceanfl H. Jefi	3.	30.	1.	2.	99.9	2.	1.5
csensors	10.	. 1	. 1	3.	99.9	4.	. 01
cguid acilets	60.	. 5	0.	2.	99.9	2.	.03
apha - interconnection	0.	0.	. 001	10.	15.	246.	7.
Cfrecticstatic meldeg	1.	10.	. 5	3.	99.9	2.	. 5
Cimteicconect peedes	1.	20.	1.	3.	99.9	2.	1.
inte.acranect rcli	1.	15.	0.	2.	99.9	3.	. 75
- SENSirs	2.	. 1	.1	3.	99.9	4.	. 01
Cvabitble speef hollebs	4.	.8	. 1	3.	99.9	2.	. 04



Cside baffle goide	2.	25.	. 01	2.	99.9	5.	0.
CbEIT	1.	1400.	10.	2.	99.9	5.	0.
CCOOLING SYSTES	1.	500.	1.	2.	99.9	5.	0.
milouid al pipeliag	0.	0.	0.	20.	0 .	4.	3.
CPIPE SECIICAS	13.	3.	0.	2.	99.	5.	3.
CPIPE JOINTS	11.	. 5	0.	2.	99.	5.	. 5
CEy Pusps	7.	10.	.01	2.	99.	5.	1.
aidon pipelite	0.	0.	0.	20.	0.	1.	3.
CPIPE SECTIOA	5.	10.	0.	2.	99.	5.	10.
CPIPE JOINIS	3.	1.5	. 0.	2.	99.	5.	1.5
CEE Puas	2.	10.	. 001	2.	99.	5.	1.
bal alloyimg pobrace	0.	0.	0.	50.	0.	3.	0.
ceasing	1.	150.	0.	3.	95.	5.	150.
ccoils	1.	60.	1150.	2.	95.	5.	0.
CRAdiator 6 fiplag	1.	1000.	10.	2.	99.	5.	10.
CCONTROLIER	1.	5.	. 1	3.	99.	5.	0 .
binon alloying furnace	0.	0.	0.	50.	0.	1.	4.
CCASING	1.	150.	0.	3.	95.	5.	150.
CCOILS	1.	60.	1150.	2.	95.	5.	
CRADIATOR \& PIPIHG	1.	1000.	10.	2.	99.	5.	10.
CCONTROLLER	1.	5.	. 1	3.	99.	5.	0.
ycoytinuous caster	0.	0.	0.	20.	0.	2.	5.
CHOLD	1.	100.	0.	3.	95.	5.	5.
CFIOID	1.	100.	0.	1.	99.	5.	5.
CPIPING SYSTEM	1.	150.	0.	2.	59.	5.	7.
CPU HP	4.	10.	20.	1.	99.	5.	1.
cradiatoa	1.	500.	0.	1.	100.	5.	0.
hal siab cutter	0.	0.	0.	10.	0.	2.	3.
CEEGUN	1.	10.	20.	3.	99.	5.	2.5
crocusing	1.	15.	30.	3.	99.	5.	0.
Ceb gun tiacking	1.	25.	1.	3.	99.	5.	1.3
Eal dic caster	0.	. 25	0.	20.	0 .	1.	4.
CPISton aild chabder	1.	15000.	75.	2.	99.	5.	750.
CHOLDS	19.	1000.	5.	2.	99.	5.	50.
Cactive cooling systes	1.	1000.	60.	2.	99.	5.	50.
craciatoes	1.	500.	0.	1.	100.	5.	0.
bfe die caster	0.	. 25	0.	20.	0.	1.	4.
CPISTCN and cuadbef	1.	2000.	10.	2.	99.	5.	0.
CMOLDS	1.	1000.	5.	2.	99.	5.	0.
cactive ccoling syster	1.	100.	8.	2.	99.	5.	0.
Cradiatos	1.	50.	0.	1.	100.	5.	0.
btaansfofmer cobe casteb		. 04	0.	20.	0.	1.	3.
ccaster	1.	100co.	50.	2.	99.	5.	50c.
cactive cooling Sister	1.	1000.	60.	2.	99.	5.	50.
CRADIATCR	1.	500.	0.	1.	100.	5.	0.
haolling mill	0.	0.	. 01	10.	20.	1.	
croughing sia:d	1.	105000.	225.	1.	95.	5.	1000.
CSIAD CCCLIAG SyStem	1.	10000.	5.	2.	95.	5.	500.
CRADIator and pump	1.	100.	10.	1.	99.	5.	5.
chaniling e coitrcl	1.	2000.	10.	2.	95.	5.	100.
CPINISHING Stand	1.	70000.	150.	1.	55.	5.	1000.
CPREheat systen	1.	100.	10.	2.	100.	5.	5.
aEmd trim/heldoholl wind		0.	0.	10.	0.	2.	7.
CEA END TAIns?	1.	$\epsilon$.	10.	3.	99.	5.	. 44
crocusing e beplectioa	1.	2.	3.	3.	99.	5.	. 5


CES LELDER	1.	2.	1.	3.	99.	5.	. 44
CACTIVE CCOIING SYSTEM	1.	14.	1.	2.	99.	5.	0.
CEOLl WISEPR	1.	500.	50.	2.	99.	5.	25.
CTEFLCN FILA molls	3000.	280.	0.	1.	100.	5.	5.
Caymbling eqoipaeat	1.	100.	5.	2.	99.	5.	10.
asbect Thianea	0.	0.	0.	10.	0.	1.	6.
CzB Cutters	3.	6.	10.	3.	99.	5.	. 44
crocusimg $\delta$ fepiectior	3.	2.	3.	3.	99.	5.	. 5
Calsoling equipaeat	1.	30.	. 1.	2.	99.	5.	3.
CACTIVE COOLILG SYSTEM	1.	30.	1.5	2.	99.	5.	0.
aEIbron Slicer	0.	c.	0.	10.	0.	1.	4.
CROILIMG Stayd	1.	70000.	225.	1.	95.	5.	1000.
Chanditag equipheat	1.	30.	1.	2.	99.	5.	
CSPOOL WINDER	1.	50.	5.	2.	99.	5.	5.
CSPOOLS	100.	2.	0.	1.	99.	5.	0.
abibion teibuer	0.	0.	0.	10.	0 .	1.	3.
CEb CusTen	1.	8.	3.	3.	99.	5.	. 44
crocusisg $\varepsilon$ deplectich	1.	2.	1.	3.	99.	5.	. 5
Chatucing equiparnt	1.	20.	. 1	2.	99.	5.	2.
hStaiatoe	0.	0.	0.	10.	0.	1.	1.
Cstriatca	1.	20000.	50.	1.	99.	5.	1000.
afcem boller	0.	0.	0.	20.	0.	1.	
ceb cutaer	1.	7.	3.	3.	99.	5.	. 44
CPOCUSING $\mathcal{E}$ deplection	1.	2.	1.	3.	99.	5.	. 5
crora acller	1.	300.	30.	2.	99.	5.	150.
Chanclini equipamat	1.	30.	1.	2.	99.	5.	1. 5
halysiack ead. assemely	0.	0.	0.	20.	0 .	7.	8.
CEB MELDEE	49.	3.	1.	3.	99.	5.	. 44
CFOCuSING E LEPLection	49.	1.	. 5	3.	99.	5.	. 15
Csheet magazine	2.	10.	. 5	2.	99.	5.	. 5
CSheet track $\varepsilon$ tramsport	6.	10.	. 5	2.	99.	5.	. 5
CPIPE adu. 6 thansfcet	6.	10.	. 5	2.	99.	5.	.5
cribben yag. e tians.	6.	5.	. 5	2.	99.	5.	. 3
CPIPE SEGHELT BENDES	6.	30.	1.	2.	99.	5.	1.5
CPIPE EIBBCN BENDEA	6.	15.	. 5	2.	99.	5.	. 75
bdC-dC CCNu. Phoducer	0.	. 2	80.8	10.	100.	1.	2.
ccoolane channel deill	1.	2000.	2.	2.	99.	5.	200.
chining machine	1.	2000.	. 5	2.	99.	5.	100.
ginsulaticn midoes	c.	0.	0.	10.	0.	8.	1.
Cinsulaticn miajef	1.	500.	2.	2.	95.	5.	25.
HGLass Eiusf pegiocer	0.	0.	0.	10.	0.	61.	7.
cplatinua allcy tube	1.	40.	8.2	3.	99.	5.	0.
CPISton $\varepsilon$ cylinder	1.	100.	0.	3.	99.	5.	5.
CGAS pis Me	1.	30.	. 5	2.	99.	5.	1.5
cgas cylinder	1.	45.	0.	1.	99.9	5.	2.
CSPCCL	6.	. 5	0.	1.	99.9	5.	. 03
cspocl yosof	1.	10.	. 1	2.	99.	5.	.75
cspool thatadia	4.	10.	. 05	3.	99.	5.	1.
gdC CCNf. Rac. ASSEMbly	0.	0.	0.	20.	0.	1.	6.
ceb meldea	20.	2.	1.	3.	99.	5.	.44
crocusinge cepizciden	20.	1.	. 5	3.	99.	5.	.15
csheei magazine	1.	15.	1.	2.	99.	5.	. 75
ctanck \& thanspcrit	1.	300.	5.	2.	99.	5.	1.5
CPIPE SEGMENE GAGAzIXE	9.	10.	. 5	2.	99.	5.	. 5
CaAMEPOLD ASSEMBLER	10.	10.	1.	2.	99.	5.	.5


HEIISTECM PIANT	0.	0.	500.	100.	25.	1.	
Calistick playi	1.	305000.	40000.	2.	80.	5.	15300.
Gglass pcaning factrest	0.	1.	17.	50.	1.	1.	
Cpoucre mixes	1.	75000．	35.	2.	90.	5.	7500.
cthergal cchtrol enit	7.	850.	80.	2.	99.	5.	
Cmold	7.	21000.	1000.	2.	90.	5.	1000．
hfoamed glass cutter	0.	0.	0.	10.	0 ．	1.	
CEIGBt rlade saw	1.	1700.	5.	2.	99.	5.	0.
CTuEuty bladi saw	1.	4000.	12．	2.	99.	5.	0.
chandifag eouipaent	1.	170.	5.	1.	99.	5.	0.
Crege afmuval sysiey	1.	29.	． 5	2.	99．	5.	0.
hsaEet cutter e sictuer	0.	0.	0.	20.	0.	2.	3.
Claser	14.	4000.	10.	3.	99.	5.	75.
CRADIATOR AXD PUAP	1.	20.	1.	2.	99.	3.	1.
CCOHVEYCR 日ELT SYSTEA	1.	170.	5.	1.	99．	5.	5.
brcaned glass smocther	0.	0.	0.	20.	0.	3.	3.
CSHCOTHING LASER	2.	4000.	10.	3.	99.	5.	75.
Cradiatop and eump	1.	40.	1.	2.	100．	5.	2.
CCOHveyoh beit sistey	1.	210.	5.	2.	99.	5.	5.
agaveguide dy cfal	0.	0.	0.	10.	0.	3.	5.
cebegu	5.	17.	17.	3.	99.9	5.	． 44
cgus cooling ststen	5.	20.	． 3	2.	99.9	5.	0.
CSLAD PEEDEAS	5.	50.	.01	3.	99.9	5.	50.
cbafples	4.	． 25	0.	1.	99．	5.	15.
Cbele e cooltng system	1.	sou．	2.	2.	99．3	5.	0.
suaveguide f－kager	0.	0.	0.	10	0.	3.	3.
Chancling eoulparat	1.	100.	5.	3.	99.	5.	5.
cuateguide racris	850.	10.	0.	1.	99.9	5.	250.
codality cchitiol	1.	50.	5.	3.	99.	5.	0.
anapeguide assemblef	0.	0.	0.	20.	0 。	12.	4.
Cassembly azys	8.	10.	1.	3.	99.	5.	25.
Cinterior guide	2.	15.	0.	2.	100.	5.	0.
Clasek	4.	4000.	10.	3.	99.	5.	75.
Cbadiatok and puap	1.	80.	4.	2.	99.	5.	4.
bpebscinel docking eict．	0.	0.	0.	10.	0.	4.	1.
CDOCKIRG aECHANISA	1.	1000．	1.	2.	99.	5.	50.
hpressueized tunnel	0 ．	0.	0.	10.	0 。	2.	
Cthe tunasi	1.	5000.	． 1	2.	99.	5.	250.
cainlcosis	5.	5000.	． 5	2.	99.	5.	0.
acakgo jccking mech．	0.	0.	0.	20.	0.	2.	2.
CRETENTICN LATCuES	4.	100.	． 1	3.	99.	5.	5.
cstpucture e damping	i．	1800.	0.	2.	99.9	5.	0.
hload－unload yabipulatoro		1.	0.	50.	0.	4.	
chanifulator afy	1.	scoo．	10.	3.	95.	5.	250.
CCEE Operating staticn	1.	2000.	1.	3.	99.	5.	100.
bangenetc tannsporter	0.	0.	0.	50.	0 ．	130.	
Cfraine	1.	50.	0.	1.	99.9	5.	2.5
Chigh peramazility plog	4.	6.	0.	2.	100.	5.	0.
CtEplCs Skids	8.	1.	0.	2.	99.9	5.	． 2
c．coniminef	6.	30.	0.	2.	99.5	5.	1.5
htransportea track	0.	0.	0.	10.	0.	1.	4.
Ctrack	4.	9000.	0.	1.	99.9	5.	90.
caageitic dhivers	1280.	30.	．08	2.	99.9	5.	1.5
cedsseans	2.	45000.	0.	1.	100．	5.	
CROUTINA COAIROL	1.	2000．	10.	3.	99.	5.	100．

```
MIMTERMAL SIORAGZ DEVICEO CBODI \& CCNTROL CIECUIT CCOMIAINER TUBES 8. cposs ARE GEEPAIR AUTOyATCNS BBEPAIR AUTOBATCNS 0. CAOSOHAETC 8EPAIR DEYICEI.
```


## Space banupacturing pacilit

LIME ITEA COSTIHG YROGGAM

INEUT VAhIABLE SPECIFICATIOH

say gloenl pataretegs:

FAYLOAJ FMACTICN OA PLBSCNHLL SIIFS $=0.10$

EEE aisl (1/lle) $=14.34$






GED. LEVEL $=5$ SJU./KU
KED. EEN-L $2=5$ S900./KL
GED. LEV:L $3=2$ SOCO. KG



HANUAL GEPAIN $=1.660$
cuti cycle sultipliEg = 1.000













		$\begin{gathered} \$ 1 \$ 15 \$ \$ 8 \\ R \in \sum_{D} \end{gathered}$	HC AFECUHEING CCSTS PROCUREMENT	\$53\$5\$\$s tannspokt	POWER	totals
	thermal belt	39250000.	403567616.	140979984.	29431488.	572285440.
	dV Of al hear contact	11855224.	4 C 663088.	4325689.	4509564.	58048944.
	DV OF SI And p-corant	29413312.	483501560.	68170816.	133704560.	673310976.
	pulse recpystallizatiou	100060192.	11522491.	1172526.	2660035.	115080704.
	SCAn mecrystallizaticn	119038C192.	6311843.	640527.	886923.	$1076 \% 6720$.
	a-dopant imelantaticn	10500000.	12350027.	1329999.	2502997.	25734432.
	anneal	10380199.	6311843.	640527.	590546.	17400368.
	dV Of Al ERCNT CONTAこT	22813 16.	333457408.	36475872.	7703553.	372635648.
	Pront ccntact sintering	10380199.	6311843.	640527.	295641.	17105456.
	CELl CROSSCUT	104c5c00.	5577291.	547860.	1839468.	97946064.
	cell intifccanecticn	20745488.	10807879.	1606630.	2270658.	34505216.
	DV SIUZ OPTICAL COVER	132740 ¢16.	845030912.	185912672.	169908160.	1256077820.
	dy of sioz substrate	33740816.	599330304.	127089696.	114727056.	$820269824^{\circ}$
$\xrightarrow{\sim}$	PANEL ALIGN $\varepsilon$ InSEET	21820496.	34692384.	7756555.	10532290.	71610620.
$\stackrel{\sim}{\sim}$	panel interccnaction	107705co.	11150450.	1739638.	5218864.	27910272.
	LONGITUDINAL Cus	10405001.	5577291.	587860.	1839468.	17946064.
	kapton tape applicaticn	20041683.	131546.	40658.	$627288^{\circ}$	20327616.
	ARGAY SEG. FOLI E PACK	10187750.	375424.	34455.	200417.	10923045.
	TEleopematoa	187COOCOO.	17400000.	270000.	106920.	204776912.
	crabler systim	127750000.	130083104.	24516000.	6024764.	248373760.
	ZCNL REFITE	131967400.	83398730.	13220331.	53793072.	285379584.
	mask cleandip device	100294592.	¢96196.	177jcc.	1081916.	162550576.
	DV of intericcmatcis	22125504.	12.876095.	1377199.	5357177.	41735936.
	liouid al pipeline	20067488.	229 cco.	4500c.	840.	20343104.
	IRGN PIFELINE	20117488.	37250.	7450.	6.	20152176.
	al alloying fuknace	58400000.	2520000.	364500.	9235394.	70519888.
	IRON ALloying plrance	$584 C O C C O$.	840000.	121500.	3078464 .	62439952.
	continucus caster	23054992.	614000.	179000	446925.	24293904.
	al slab cutter	11000000.	200000.	10000.	296911.	11506911.
	al die caster	105250000 。	17524992.	3550000.	676268.	127001248.



$R E L$	PROCUKEMENT	TEANSPORT	POWER	TOTALS
35524992.	1552500.	315000.	66951.	37459424.
75250．00．	5525000.	1150000.	323433.	82248416.
150うち0000．	14005000.	10720000.	931824.	19256.6800.
1341 COCO．	27454160.	168124800．	395422.	209364308.
10460040.	78000.	8400.	122022.	10608＇22．
45400992.	3545896.	7020000.	$64524 \%$ 。	5662 Cl
10.300000.	30900.	3000.	$1153 \%$	10344534.
2CECOOCO．	1000000．	2000000.	148500.	23144496.
21030000.	183Cく3．	33400.	100863.	22147728.
20450000.	2 204，540．	445200.	1942242.	25752320 。
3 COCOCLO ．	20001100.	400000.	7351.	32407344.
12500000.	2000900.	400000.	456100.	14945600.
13222750.	26950730．	1634800.	1580516.	37396784.
21734592.	$37250 \%$ ．	56500.	148485.	22312464.
1624959940.	152500000．	30503000.	95999968.	1903999490.
534249472 。	113574992．	22734992.	20485968.	691504896.
30684592.	2 Ht 8500.	589000.	64840	42207312.
1001849 ¢。	224036992.	11230000.	858566：	336318208.
101250007.	40374542.	21775000.	231637.	152331616.
13949125．	2910143．	200000.	792963.	17924016.
130）5000．	1302498.	2555900.	88209.	17050704.
100674942．	306573712.	19428000.	1853276.	508535552.
1500900．	20001000.	400000.	11880.	17411072.
6CCCOCSO．	3CCい）心00．	6000000.	15444.	96015440.
31000000.	3405000.	440060.	2398.	34842384.
196C00000．	56000000.	2800000 ．	124146.	248524944.
50210000.	6107676.	3406000.	5.	59803664.
77150000.	18023248.	16640000.	67716	111890960.
11900000.	2360000.	472000.	47045.	14774044.
120000000.	84000090.	8400 CO ．	504000.	205343984.
5045313540.	4300349440.	944832512.	697467904.	10732580900.

Isssssss aEcuraino costs ssssssss

$\begin{gathered} \text { OFEBAIINP } \\ \text { LABCh } \end{gathered}$	FRCCUREEEME	Les   TAAHSPOAT	Labor	nepara PMOCUBEHEME	canmsport	Totals
0.	2:2476.	1162319.	100191.	2017 0368.	9516148.	28849400.
0.	116354.	1163541.	55416.	203J155.	291984.	3385229.
0.	116471.	1164709.	591557.	24175088.	4601531.	28344896.
0.	115471.	1104107.	32032.	576124.	79145.	1820472.
0.	110471.	1164707.	32032.	315592.	43236.	1546319.
0.	466150.	233175.	160 16,	617501.	89715.	1.15838.
0.	110471.	1164707.	32032.	315592.	43236.	1546319.
0.	1164707.	11647002.	151113.	16672924.	2462121.	29604560.
0.	116471.	1164707.	32632.	315592.	43236.	1546319.
0.	290595.	116.2379.	48049.	278864.	39680.	1682757.
0.	34437.	$232244^{\circ}$	172174.	540394.	109448.	1000285.
0.	231700.	2317756.	835164.	42251552.	12549110.	53810500.
0.	251780.	2317796.	583549.	29966560.	8578563.	38544560.
0.	34906.	232769.	1205217.	1734618.	523568.	3450492.
0.	34037.	232244.	172174.	557523.	117425.	103042 d .
0.	290545.	1162379.	40049.	270864.	33680.	1682757.
	34976.	233171.	89210.	6577.	2744.	339109.
0	34976.	233170.	95016.	18771.	5701.	347720.
0.	0.	0 .	66225.	1739994.	36450.	1842673.
0.	1735.	8677.	1791093.	9099153.	2225474.	13126112.
0.	104877.	524383.	651563.	553127.	100582.	1934530.
0.	0.		835351.	15352445.	1184624.	17572416.
0.	874.	4370.	37632.	6013995.	2959468.	9016338.
0.	0.	0.	373270.	103000.	27810.	504090.
0.	0.	0.	30102.	28250.	7627.	65980.
0.	0.	0.	109369.	915000.	64800.	1028168.
0.	0.	c.	36123.	305000.	21600.	362723.
0.	0.	c.	66225.	27900.	5670.	99795.
0.	0.	0.	18061.	15200.	1026.	34287.
73754.	0.	0.	63215.	875000.	236250.	1248223.



		OPE日ATIMC   LABCK	Expempables			$\begin{gathered} \text { gepaia } \\ \text { procurameut } \end{gathered}$	THAMSPCRT	rctals
	fe cie caster	750:1.	0.	0.	9031.	0.	0.	82052.
	TRANSPOLAEF COR C CASTEA	1100\%.	0.	0.	6020.	275000.	74250.	367672.
	follihg MILL	0.	1414.	7069.	63215.	402750.	352350.	826797.
		0.	3.	0.	36123.	519094.	H059821.	4615038.
	SHELT - HIMrEk	0.	9.	0.	24082.	7140.	786.	32000.
	6ibics iliceg	0.	0.	0.	322096.	54000.	136080.	512176.
	ribuen teimych	0.	0.	0.	9031.	2880.	397.	12302.
	STf147Ca	0.	0.	0.	3010.	50000.	135000.	188010.
	PCPM IT,LLII	0.	0.	0.	12041.	37630.	20579.	110250.
	Klysitch maj. Assenaly	0.	0.	0.	2739314.	276414.	46393.	3064121.
	cc-cc Ce:d. FiCOUCEa	59047.	69. 9360.	69419760.	0020.	150000.	40500.	139095024.
	dusulazlu: diniep	0.	0.	0.	123410.	100000.	270 C.	247410.
	claje riose frcojceg	0.	0.	0.	1597548.	936696.	110596.	2644040.
	DC CCsv. 5do. ASSExely	0.	0.	0.	181625.	29475.	3179.	216279.
	KLYLTiOy ? , הT	0.	87659952.	$3506396 \%$.	60275.	7649997.	2065499.	448074752.
	SLASS PCAMIN: PACILITY	270651.	133946.	13398550.	261091.	7309494.	1973564.	23348112.
$\omega$	PoAyef ilass cutrer	0.	0.	0 -	12041.	0 -	0.	12¢4.
0	SHz, T CJTIEF E SLCTTEM	0.	0.	0.	95328.	4201490.	$2 \mathrm{es120}$.	4592544.
	fehatc ulasis syouzash	0.	0.	0.	27092.	910500.	63545.	1001177.
	babrcusea or cs 11	0.	0.	0.	S1106.	$152219 \%$.	126441.	1702424.
	baverujce fickagla	0.	0.	0.	785755.	11592465.	96064512.	98442720.
	- Avejuiur assembiek	0.	0.	0.	469598.	12024000.	21648 C .	13310076.
	PEPSCivEi. LCCKINi aECH.	0.	0.	0.	12041.	100000.	27600.	135041.
	pabsjuficid tunase	0.	0.	0.	36123.	250000.	67500.	353623.
	CAFGG JuLkiss rizil.	3.	0.	0.	24684.	80000.	54 CO .	110084.
	Loat-uyloat matreutatur	1132453.	0.	0.	72246.	2806000.	189000.	4193697.
	MAGAETIC TPANJECRIE日	0 0.	0.	0.	1526229.	305837.	229905.	$20+1570$.
	Thanstopiep itack	0.	0.	0.	389566.	604163.	321300.	1315029.
	Internal storace cevice	0.	0.	0.	240019.	118000.	31860.	390674.
	eepaim duiogatuns	0.	5891.	29454.	2520604.	0.	0.	2561548.
	Totils	1620690.	161109984.	462185216.	20097152.	228210608.	143282448.	1000278020.

TCTAL DIERCT MGN－RECUKGING CCST $=\$ 10732580900$
TOTAL DIAECT KECUEGING CCST＝5 1000278020 ．
TOTAL UILECT PRODUCTICM MASS（KG）$=5448325$.
TOTAL DIhECT PRODUCIICN FUNEB（KH）＝ $2 こ 2489$.
TOTAL DIRECT PHOCUCTICN CRLU＝216，FECPLE
TOTAL SMP CAEN＝ 433
CREM IRANSECRT HASS＝173151．RG．CCNSUMABLE EASS＝ 131140 ．KG CREW TRANSFURT COST＝ 77916080 ．CCRSUMAELES COST $=13114043$.

CREN TRAINING COSTS $=521643920$
SUEECET CFEN WAGZS $=865153504$ ．
SUPPORT EXPENDALLES TRANSFCHT COST $=\$ 0$.
HABITAT YASS（KG）$=1215950$.
HAEITAT POWER（Kd）
3896.
RED AND FROCUGSMEATCCS＇：CEHAEITAI（\＄）＝ 50859468 ．
TRAMSPGRT COST OF HABITAT（ 5 ）＝ 113154992 ．
FOUEYCCST CP HABITAT（\＄）＝ 11687717.

```
NONRECURGING: COST CP NCHPRCLUCTICN SHF
```

TOTA1 SMF BASS (KG) $=15130126$ 。
TOTAL SMP POHEG $(X U)=237385$.
SHE SUPECET THANSPORT COST $=5201000000$.
SBP SUPPORT POWLR COST =\$ ZCCCCOC.

SETUP COSTS＝$\$ 3086410$ ．PUR O．PEOIIE



$\$ \$ \$ 85 \$ 5$ DISCOUMTEL AVERAGE SFS CCST＝\＄ 1083524100 。

## A.2: PROGRAM SPSLP

(LINEAR PROGRAMMING OPTIMIZSTION
of SMF buildup scenarios

## LISTING <br> DATA <br> OUTPUT



```
C*
CONSTRAINT FOR YEARLY BODGET
 DO 9 I = 1.20
 A(1+40,1) =1.
 A(1+40,I+20)=1.
 A(T+40.1+40)=CE
 A(:+40.I +CC)=CL
 A(I+40,I+80)=CG
 IF (I.EG.l) GO TO 9
 K1=1-1
 DC 8 K=1.K1
 I(I+40.K+40) =-8R
 A(I+40,K+80)x-BE
C* TAKE OUT IHE FCLLOHING LINE TO DECOOPLE GROUND-BASEL PROPITS
 A(1+40,K+80)=-BR
 CCNTINOE
 B(I+40)=I(I)
CONSTEAIMIS CN &OHBZH OT SPS'S IND RED SPEBDIEG
 DO 10 J= 1,20
 A(E1,J+4(i)=1.
 A(61,j+60)=1.
 A(61,J+50;=1.
 A(62,J)=1.
 A(E3.J+20).1.
 B(E1)=SPSAAL
 8(62) = EE
 B (63) = BL
C*
 DO 4 1=1.20
 DO 2 J=1.I
 SPS00540
 SPS00550
 A(I,J) =-1./日E
SPSOUS60
 A(1.I* 40) =1.
 SP500570
 IF (I,EQ.1)GO TO 4
 S9S00580
 SE500590
 C1=1-1
 DO 3 K=1,K1
 SPS00600
 A(I,K+4O)=-1.
 B(I)=0.
COMSIEAINT TC EAT RGD OM &OMAB-SUPRLY SISTRG
S05610
 SPSOO630
SPS00640
 SPS00650
 DO }7\quadi=1,2
 CO 5 j=1,I
 A(I+20.J+2C)=-1./8L
 A(I+20.I +60)=1.
 IF II.EQ. 1) 60 T0 7
 K1=1-1
 DO 6 K=1, E1
 A(1*20,K*60)=-1.
 E (I+20)=0.
 SPS00660
 SPS00670
 SES00680
 S:S00680
 SP500090
 SPS00700
 SPS00710
 SPS00710
 SPS00720
 SPS00730
 SP500740
 SPS00750
 SPS00160
 SPs00770
SPS00780
SPS00750
SPSJOOCO
SFSOOB10
SPS00:120
SESOOS30
SPS00B40
SP500850
SES00860
SPS00870
SPS00880
SPS90890
SPS00900
SPS00917
SPS00920
SPS009.30
SPs00940
SPS00950
SPSO0960
SPSCOG70
SPS00960
SPS00990
SPSO 1000
SPSO1010
SPSO1020
SPSO1020
SPSO1030
SPS01040
SPSO1050
SPSO1060
```

$\mathrm{C}^{\circ}$	SET UP OEJECSIVE FOMCTIOA	$\begin{aligned} & \text { SRSO1076 } \\ & \text { SPSO } 1080 \end{aligned}$
	DO 111 1＝1．20	SPSO1090
	$C(1)=-(1 .+8) *(-I)$	SPSO 1100
	$C(I+20)=-(1 . * Q) * *(-I)$	SPSO1110
		Srsolito
		SPSO1130
11		SPSO1140
$c^{+}$		SPSOIIS0
c	IP CHECK $=1 .$. ERIRT OUT gABLEAU FOR PROGBAE EEBLFICATKOE	SPSO1160
6		SPSO 1170
	IF（CEECK．ME．i．） 605015	SPSO1180
	DO $12 \mathrm{~A}=1,5$	SPSO 1190
	J $=20$ K－19	SPSO1200
	J2＝20＊	SPSO 1210
	H61TE（6．301）J1．J2	SPSO1220
	DO 12 I $=1.63$	SPSO 1230
12	URITE（6，302）（A（I，J），J＝31，32）	SPSO1240
	no 13 $K=1.3$	SPS01250
	J1＝20＊K－19	SPSO：200
	J2＝200K	SPS08270
	WEITE（6．303） 11.12	SPSO1280
13		SPSO 1290
	DO 14 $\mathrm{K}=1.10$	SPSOI3n9
	J1＝100K－9	SPS01310
		SPSO1320
	USITE（t，J04）J $1 . \mathrm{J2}$	SPS01330
14	UEITE（6．2c0）（1）（J）．d．J 1．J2）	SESO1340
c＊		SPSOI350
c＊	SUBROUTENE CAIL TO IASL SUBBOUTIMA PACMAGE POR BEOISED SIAPLEL	SPS0：360
c＊	IP OPTISIEATICS BCUTISE	SESO1370
c		SPSO1300
15		SPSO 1.390
C＊		SESOI 500
C＊	DAITE OUT IP SUBBCUTINE ERROE CODE：SIOP IE ABMORAAL	SP501410
c＊		Srsoi420
	Haxte（6，203）Ith	SVS01030
	IF（IER．JE，O）GC IO 10	SP501440
c＊		SPSO1953
c＊		SPSO1460
c＊		SPSO1070
	YE1：E（0．204）S	SPSO1480
c＊		SPSOItsio
c＊	erite dui fejmal suiutiou	SPSO：500
c＊		SPSO 1510
	Dc 16 16－1．10	SpSO1520
	11＊10＊1－3	SPSOIS30
	エごい＊	SPSOISAO
	WRIT： $0^{0.205111 .12}$	SPSO1550
16	WRIIE（0，200）（PSOL（J），J＝I 1，I2）	SESOIS60
c		SPS01570
c＊	QRIE OHi doal soxdtion	SPSO1580
c＊		SPS01590


	$50.17 \mathrm{y}=1.6$	SpS01600
	$11=16 \times 1-9$	SPS016 10
	12=1001	SPSC 1620
	ESITE(6.207) 11. 12	SPS01630
17	yEITE (6.206) (ESOL (J) , JWE 1.12)	SPSO1640
	I1961	SPS01650
	12-63	SPS01660
	EAITE 6.20711 .12	SPS01670
	EEITE (6,209) (DSOL (3) , J=6 1.63)	SPS01680
18	STCP	SPS01690
c*		SPS0 1700
	Orami State ozus	SPSO1710
c*		SPSO 1720
101	F08mat (9F8.3)	SPS01730
102	ECBAAT (1CFe.3)	SPSO 1740
201		SPS01750
	-9 EAETL SOFPLT 日6D CCST (88) = -86.1/	SPS0 1760
	-" LUEAS SOP2Is EGD COST (SB) = ',F6. 1)	SPS01770
202		SPS0 1780
		SPSO 1790
	-6x. ${ }^{\text {chamar SPS OPTIOR }}=. .86 .1 /$	SPS0 1800
		SPS0 1810
203	fGegat (/' yeashi retury froa Sps (SB) = -P8.2)	SPS0 1820
204	PORSAT U//C ORTIMI2ED MET PROFIT (S8) $=\cdot$. F8.3/1/n	SPSO 1830
205		SPS0 1840
206	foryar (1x. 10F 12.5)	SPS01850
207		SPSO 1860
208		SPS01870
209	fcriat (iy - 5)	SPS0 1880
301		SE 3181890
302	FCsast (1. a)	SPS01900
303		SPSO1910
309		
	EyE	SPSO 1930


PILE: SPSLP	dat	$\lambda$	IO


30.	70.	6.	2.	15.	1.752	. 1	112.	1.	
10.	10.	10.	10.	10.	10.	10.	10.	10.	10
10.	10.	10.	10.	10.	10.	10.	10.	10.	10


CONSTEUCTICN COSTS: SE PER 10.000 ay $\begin{array}{lr}\text { SARTII SPS OPTICH } & 6.0 \\ \text { LUEAR SPS OPTSON } & 2.0 \\ \text { GROUND-EASED OPTIC } & 15.0\end{array}$ ground-qased ortich
teaely geturn paon 5ps (58) - 1.75

ableso	nital	1. COL	Lurns	1 T118	ROUGU	20													
0.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.	0.	0.	0.0			0.0	0.0
-0.03	-0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-0.03	-0.0.1	-0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0
-0.03	-0.03	-0.03	-0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-0.03	-0.01	-0.03	-0.03	-0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-0.03	-0.01	-3.03	-0.0,	-0.03	-0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-0.03	-0.03	-3.03	--.03	-6.03	-0.03	-0.0]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6
-0.03	-0.03	-0.0.)	-0.0.3	-0.03	-0.03	-0.03	-0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-0.03	-0.03	-0.03	- 0.03	-0.nj	-0.03	-0.03	-0.03	-0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-0.c3	-0.03	-0.3J	-0.03	-0.03	-0.03	-0.01	-0.03	-0.03	-0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-0.03	-0.03	-0.03	-0.03	-0.13	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-0.03	-0.03	-0.03	-0.03	-0.03	-0.6」	-0.03	-c.c3	-0.03	-0.03	-0.03	-0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-0.03	-0.01	-0.03	-4.01	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-0.03	-0.33	-0.03	-0.03	-6.03	-0.03	-0.03	-0.03	-0.03	-0.01	-0.03	-0.03	-0.03	-0.03	0.0	c. 0	0.0	0.0	0.0	0.0
-0.03	-0.33	-0.01	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	0.0	0.0	0.0	6.0	0.0
-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-n.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	0.0	0.0	0.0	0.0
-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	0.0	0.0	0.0
-0.0. ${ }^{\text {a }}$	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	$\cdots 0.03$	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	0.0	0.0
-0.03	-0.3)	-0.03	-0.03	-0.03	-0.03	-0.01	-0.01	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	0.0
-c.03	-0.03	-0.03	-0.03	-0.03	0.03	-6.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	0.01	-0.03	0.03
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	$0 . v$	0.0
1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

### 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 1.00

$$
\begin{aligned}
& 0.0 \\
& 0.0 \\
& 0.0 \\
& 0.0 \\
& 0.0 \\
& 0.0 \\
& 0.0 \\
& 0.0 \\
& 0.0 \\
& 0.0 \\
& 0.0 \\
& 0.0 \\
& 0.0 \\
& 0.0 \\
& 0.0 \\
& 0.0 \\
& 0.0 \\
& 0.0 \\
& 1.00 \\
& 0.0
\end{aligned}
$$

$$
\begin{aligned}
& 0.000000000000000000 \\
& 08000000000000000000
\end{aligned}
$$

 1.00
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.00
0.0 0.0
1.00
0.0
0.0
0.0
6.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.00
0.0 0080000000000000000
$0000000000000000-0$ 0.0
0.0
0.0
1.00
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.00
0.0 00008009000000900080
0000000000000000000 $00000-00000000000070$ 0.000000000000100000
08000000000000800000 0.90008000000000080
000000000000000000 0.000000000080000000
08000000000080000000 $0,000000009.00000000$
08000000000800000000 $0-00090009-000000000$
00000000008000000000 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.00
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.00
0.0
 0.00000 .000000000000
08000008000000000000 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.00
0.0
0.0
0.0
0.0
1.00
0.0 $0-090,00000000000000$
08000800000000000000 0.00 .00000000000000
0800800000000000000


 000000000000000000000000000000000
00000000000000000000000000000000 0.0000000009000000000000000000000
000000000000000000000000000000000 00000000000000000000000000000000
00000000000000000000000000000000

 20000000000000000000000000000000
000000000000000000000000000000000 00008080008000000000090000900000
0000000000000000000000000000000

-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	0.0	0.0	0.0	0.0	0.0	0.0
-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	0.0	0.0	0.0	0.0	0.0
-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	0.0	0.0	0.0	0.0
-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0,01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.08	-0.01	0.0	0.0	0.0
-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	0.01	0.0	0.0
-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.09	-0.01	-0.01	-0.01	-0.09	-0.01	-0.01	-0.01	-0.01	0.01	-0.01	0.0
-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.09	-0.01	0.01	0.01	-0.01	0.01
1.00	0.0	0.0	0.0	0.0	0.0	0.0	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	1.00	0.0	0.0	c. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	c. 0	0.0	0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	c. 0	0.0	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	c. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.0	0.0	0.0	0.0	0.0
0.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.00	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.00	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.00
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
cablead	O natai	-	HMS	$13^{2 H E}$	80064	60													
1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-1.00	-1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.0	0.0
- 1.00	-1.03	-1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-1.09	-1.00	-1.00	-1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0	0.0	0.0
-1.00	-1.00	-1.00	-1.00	- 1.00	1.00	0.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
- 3.00	-1.00	-1.00	-1.00	-1.00	-1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-1.00	-1.00	$-1.00$	-1.00	-1.00	-1.c0	$-1.00$	$-1.00$	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.20	-1.00	-1.00	1. 60	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-1.03	-9.00	$-1.00$	-1.00	- 1.00	$-1.00$	- 1.00	$-1.00$	$-1.00$	-1.00	$-1.00$	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	- 1.00	-1.00	-1.00	- 1.00	-1.00	- 1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-1.00	-1.00	$-1.00$	-1.00	-1.00	-1.00	-r.00	$-1.00$	-1.00	-1.00	-1.00	-1.00	-1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0
-1.00	-1.00	$-1.00$	- 1.00	- 1.00	-1.00	- 1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	1.00	0.0	0.0	0.0	9.0	0.0
- 1.00	- 1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	- 1.00	-1.00	- 1.00	-1.00	1.00	0.0	0.0	0.0	0.0
-1.00	-1.00	-1.00	-1.00	- 1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	1.00	0.0	0.0	0.0
-1.00	- 1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	- 3.00	$-1.00$	-1.00	- 9.00	- 1.00	-1.00	- 1.00	-1.00	-1.00	1.00	0.0	0.0
-1.00	-1.00	-1.00	-1.00	$-1.00$	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	1.00	- 1.00	-1.00	-1.00	- 1.00	1.00	0.0
-1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0	1.00	1.00	1.00	-1.00	1.00
0.0	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0



A47





 H0000000000000 00000000000000000 0000000000000000000000
00000000000000000000000000000000000000000000000000000




gBBOR CODE pROA EF SUBPOUTIHE = 0

	peimal sozutiou	$\underbrace{\text { per colanas }}_{0.0}$		$\begin{aligned} & 19830061 \\ & 2.25015 \end{aligned}$		$\begin{aligned} & 10 \\ & 0.0 \end{aligned}$	0.0	0.0	0.0	0.0	0.0	0.0
	$\begin{gathered} \text { PRIARI SOLUZIOI } \\ 0.0 \end{gathered}$	$\begin{gathered} \text { POR colUn } \\ 0.0 \end{gathered}$	nus	$\begin{aligned} & 11 \text { THROU } \\ & 0.0 \end{aligned}$		$\begin{aligned} & 20 \\ & 0.0 \end{aligned}$	0.0	0.0	0.0	0.0	0.0	0.0
	$\begin{array}{r} \text { PBIEAL SOLUTIOD } \\ 9.72222 \end{array}$	$\begin{aligned} & 8 c a \text { colun } \\ & 9.01867 \end{aligned}$	nus	$\begin{aligned} & 21748004 \\ & 2.39050 \end{aligned}$		$\begin{aligned} & 30 \\ & 0.0 \end{aligned}$	0.0	0.0	0.0	0.0	0.0	0.0
	PBEAL soloticy	$\begin{gathered} \text { PCa colos } \\ 0.0 \end{gathered}$		$\begin{aligned} & 31,{ }^{281000} \\ & 0.0 \end{aligned}$		$\begin{aligned} & 40 \\ & 0.0 \end{aligned}$	0.0	0.0	0.0	0.0	0.0	0.0
	Pribal solution	$\underbrace{\text { Ecs colon }}_{0.0}$		$\begin{aligned} & 517 \mathrm{FPOOD} \\ & 0.07501 \end{aligned}$		$\begin{aligned} & 50 \\ & 0.15001 \end{aligned}$	0.30002	0.60004	1.20008	0.0	0.0	0.0
	$\begin{gathered} \text { Paialil soloticen } \\ 0.0 \end{gathered}$	$\underbrace{2 c a}_{0.0} \text { colun }$		$\begin{aligned} & 51.74 \text { bot } \\ & 0.0 \end{aligned}$		$\begin{aligned} & 60 \\ & 0.0 \end{aligned}$	0.0	0.0	0.0	0.0	0.0	0.0
	$\begin{gathered} \text { Paigal solorion } \\ \text { 0. } 13899 \end{gathered}$	$\begin{gathered} \text { fCR coLua } \\ 0.41233 \end{gathered}$		$\begin{aligned} & 61 \text { 19800u } \\ & 0.85881 \end{aligned}$		$\begin{aligned} & 70 \\ & 1.71762 \end{aligned}$	3.43524	6.87047	13.74096	27.48187	54.96 .973	0.0
	$\begin{gathered} \text { Payall solution } \\ 0.0 \end{gathered}$	$\underset{0.0}{\text { POB colon }}$		$\begin{aligned} & 71 \text { In800 } \\ & 0.0 \end{aligned}$		$\begin{aligned} & 80 \\ & 0.0 \\ & 0.0 \end{aligned}$	0.0	0.0	0.0	0.0	0.0	0.0
$\underset{\sim}{\stackrel{\rightharpoonup}{0}}$	PREALI SOLOTIOK	$\underset{0.0}{208} \text { coloa }$		$\begin{aligned} & 81 \text { tuboo } \\ & 0.0 \end{aligned}$		$\begin{aligned} & 90 \\ & 0.0 \end{aligned}$	0.0	0.0	0.05493	0.0	0.0	0.0
	priadil solution	$\begin{gathered} \text { PCR COLUA } \\ 0.0 \end{gathered}$		$\begin{aligned} & 91 \text { THAOO } \\ & 0.0 \end{aligned}$		$\begin{gathered} 100 \\ 0.0 \end{gathered}$	0.0	0.0	0.0	0.0	0.0	0.0
	$\begin{gathered} \text { DOAL SOLUTIOA } \\ 34.11517 \end{gathered}$	$\begin{aligned} & \text { POR ROUS } \\ & 20.53935 \end{aligned}$	$12$	$\begin{aligned} & \text { THACUGA } \\ & 12.04720 \end{aligned}$	10	5.63644	2.45757	0.90365	1.49948	0.0	0.0	0.0
	$\begin{aligned} & \text { rual solozion } \\ & 0.0 \end{aligned}$	$\begin{gathered} \text { FCH ROHS } \\ 0.0 \end{gathered}$		$\begin{gathered} \text { THACUGU } \\ 0.0 \end{gathered}$	20	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	$\begin{gathered} \text { DUAL sozurioy } \\ 113.19492 \end{gathered}$	$\begin{aligned} & \text { FOR } \mathrm{BOUS} \\ & 56.84492 \end{aligned}$		$\begin{aligned} & \text { тHacuca } \\ & 24.57626 \end{aligned}$	30	13.75897	6.39729	2.76060	1.63221	0. 10757	0.68124	0.0
	$\begin{aligned} \text { DOAL solezion } \\ 0.0 \end{aligned}$	$\begin{aligned} & \text { Pcy roys } \\ & 0.0 \end{aligned}$		$\begin{gathered} \text { Thacugs } \\ \substack{0.0} \end{gathered}$	so	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	$\begin{gathered} \text { DUA1 so10r108 } \\ 2.27136 \end{gathered}$	$\begin{aligned} & \text { PC8 gous } \\ & 0.73692 \end{aligned}$		$\begin{gathered} \text { TH8COGB } \\ 0.0 \end{gathered}$	50	0.0	0.0	0.0	0.34655	0.0	0.19505	0.0
	DOA1 solorioy	$\begin{gathered} \text { PCB ROUS } \\ 0.0 \end{gathered}$		$\begin{gathered} \text { 2H800cs } \\ 0.0 \end{gathered}$	60	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Deal soluziou 6.48606	$\begin{gathered} 801 \\ 0.0 \\ 0.013 \end{gathered}$		yazonga	63							

## A.3: PROGRAM SCFCOST

# (PROBABILITY ANALYSIS OF SOLAR CELL <br> FACTOR: BREAKDOWN AND REPAIR REQUIREMENTS) 

## LISTING

DATA
OUTPUT


c	SESIAP - SUPFCAT EQUIPGEAT REPAIR STAPP ON DUTY	SCP00540
C*		SCP00550
C*	LIEE - SCE LIFE\%IHE (IKS)	SCP00560
c*	Dh - DISCCUET Bate	SCP00570
c*	SECDKG - SCP STEUCTUAE GED A AD PROCUREAEBT (S/RG)	SCP00580
C*	STCKGV - SCE STRUCTOEAL EEASITY (KG/u**3)	SCP00590
C*	STCYS - SCE STRUCEURE (A**3/SECTIOA)	SCP00600
C*	STCAES - SCE STEUCTUEE (XW/SECTIOA)	SCFC0610
c*	SICETP - SCF STRUCIURE LXPEADABLES (KG/BE-SECTIOM)	SCP00620
C*	STCEXC - SCF STEUCTEEE EXPEXDABLES COST (S/KG)	SCFOO630
C*	VoLha - baximun volibitalc load factor in darebouse	SC200640
C*	MHDKG - Pabebuuse Cost (S/KG)	SCF00650
$r$	UBEGV - MARE日CUSE DESSITY (EG/M**3)	SCF0066)
c	VRED - - OUSE EEC (\$) -	SCP00670
c		SCP 00680
c*	HELXI - MAELiOUSE EXPEAEAELES (KG/a**3/HP)	SCF00690
c	HazXC - HAEEEOUSE EXPEaDABLES COST (5/KE)	SCF 00700
c	CCSHAS - COATLOL CEMTEE STAUCTOEAL HASS (EG)	SCF007 10
C	CEanas - CCBTRCL CEtieb hasdiaki unss (kg)	SCP00720
C*	CCED - COALAOL CEMTEE EEL (UITU SOPTUARE DETELOPEEET) (S)	SCEC0730
c*	CCHCST - CCBTROL CENTER nat uare cost (\$)	S.P00740
c*	CCSPOL - OMTAOL CEHTER STRUCTURAL POEEE (AM)	SCP00750
C*	CCiPun - CCATEOL CEATER HAEDRARE POUER (KA)	SCP 00760
c	CCEXP - CONIKOL CENTER EXPENDAELES (KG/AR)	$5 \mathrm{SC00770}$
c*	CCEXC - COHTROL CEATER EXPE MDABLES COST (\$/RG)	SCP00780
C*	CCSTAF - CONTROL CEHTER STARP OA DUTY (DOES HOT IMCLUDE	SCE00790
C*	TEIECPE日atce Stape	SCF00800
C*	RSSKGP - REEAIR SHCP STRUCTUEAL HASS (KG/PERSOA)	SCF00810
C*	RSHKGP - REPAIA SHOP HAEDRARE HASS (KG/PERSOH)	SCP 00820
c		SCF00830
c*	RSSKUP - REPAIE SHOP STRUCTURAL POWSR (RH/EEGSOL)	SCF 00840
C		SCF00850
C*	ASLD - BEPAIF SHGP PED (S)	SCF00860
C*	BSEXP - REPAIB SHOP EXPEKDADLES (KG/PESSON-AE)	SCP00870
C*	ASEIC - EEPAIR SIH? EiPEUEATLES COST (S/KG)	SCF00880
C*	ESED - UICRCPEOCESSOES \& SENSCES RED (\$)	SCP00890
C*	HJDST - UICEOZEOCESSORS E SENSOES PROCUAEUENT (\$/STRIP)	SCF00900
c*	MSKGST - MICECPRCCESSORS 6 SEMSORS IASS (KG/STRIP)	SCF00910
c*	MSKXST - MICHORKOCESSOKS i SENSORS ROAER (RA/SSTRIP)	SCF00920
C*	ASEXP - MICi.CPhocesscks e SEnSOES LXPEADABLES (KG/STRIP/BR)	SCF00930
C*	USEXC - ELCECRRCCESSCAS \& SENSORS EXP. COST (S/KG)	SC FC0940
C*	CRMR - CHALIER RED (5)	SCE00950
C*	( ACST - CEASLEEK PEOCUREMENT (S)	SCP00960
C*	CKayas - Chawler hass (kG)	SCP00970
C*	CEWPOA - CRABLCR POWEE (KW)	SCF 00980
C*	CEDEXP - CbAdier expendables Mass (RG/HR)	SCF00990
C*	CFEEXC - CFAHLEE EXPEMDABLES COST (\$/EG)	SCFO1000
C*	TELRD - TELFCPEEATCR SED (\$)	SCFO1010
C*	telcst - teleuperator procureuent (\$)	SCEO 1020
C*	telans - telecpefatok tass (kg)	SCFO1030
C*	TELPOH - TELEOPEEATOR POWEE (KM)	SCFO1040
c*	TELEXP - TEIEOPEAATOH EXREUDABLES (KG/HR)	SCP0 1050
c*	TELEXC - TEiEOPEGATOB EXPEBCABLES COST (\$/hG)	SCP0 1060


${ }^{*}$	PAKCRU - LUSEES CP CRANLE.S DEEUED POR AREAT SEGEEPT PACRAGLEG	SCFO 1076
C*	OCIES - COST CE AREAI SEGYEHT STOEAGE BOXES/SECTIOE (S)	SCPO1080
c*	OUTHUT - JUAEER OP CELLS PKODUCEDYR	SCFO 1090
C*	HAyEM(L. K) - anchipe danes	ScF01100
c*	SAMEC(I.J.K) - COAEOALHT YAHES	SCPO1110
c*	E[IL.J) - CCEPCEEMT FSD COST	Scroir20
c*	COST(I.J) - COAFON\&AT PBOCUEEHEXT (S) (WITA 80\% LEAREIEG)	SCPO1130
c*		SCPO1140
c*	amSi (I.J) - COAFONENT BASS (KG)	SCF01150
c*	WLIME (I, J) - CCJPC IEMT YOLUAE (\%**3)	SCF01160
c*	noccap (I.J) - bumber of Conporeats of this tipe Im a nacaibe ie	SCP01179
c*	IT IS THE TYPE OF COARCMEMT gad Seaves oaty our	SCP01180
C*		SCPO 1190
c*		SCPO1200
c*	14 STbiPS	SCFO1210
c*		SCPO 1220
c	TYPE(2,J) - EUBBER CF STEIPS SERVED BY CJAPOEEAT (1 OR 14)	SCPO1230
C*		SCPO1240
C*	EXPEAD (I.J) - CCAPCMEMT EXPEMDABLES HASS (KGJAR)	SCP01250
C*	EYPCST (I.J) - COHROMENTS EXPENEARLEJ COST (S/KG)	SCPO1260
C*	ERCODE (L.J) - COSPCMENE GEPAIL/IEPLACE CODE:	SCFO1270
C*	1 - teleoremator aefaik on lime	SCFO1280
C*	21 - Cranlair heplaceienf. attcatied begair	SCFO1290
C*	22 - CaAblea replaceyekt. huday nepaib	SCFO1300
c*	] - PERIODIC CRALIEÃ EEPLACENENT (EECYClE/dISCARD)	ScF01310
c*		SCFO 1320
C*	HUSIME (I, J) - HUSAN TIME PSR FAILURE (HSS)	SCP01330
C*		Scroilito
C*		SCPO1350
C*		SCFO1360
c*	CES(I.J) - CCST CE AEPAIR SiCCK (5/KG)	SCFO1370
c*		SCF01380
C*	AOTRD(E.J) - BEPAER JUTCYATOS RED (5)	SCFO 1390
C*		SCPO1400
c*		SCPO1810
C*	AUE2UK(I, J) - REEAIF AUTCMAICS PONEm (KN)	SCF01420
C*		SCFO1830
C*	AUEEXY(I.J) - REPAIE RUTCAAICN EXRENDARLES (KG/HE)	SCT01440
c*		SCFC1450
C*		SCP01460
C*	CLiCST (I,J) - CLEANIMS MACBINi EEOCUEAEALNT (\$)	SCFO 1470
C*	CLA.ASS (I,J) - CLEANING MACHINE \%ASS (K心)	SCF 01480
C*		SCPO1490
C*		SCFO1500
c*	Cinaxis (l, J) - CEEAMIAG maclitie expencaeles (KG/uR)	SCPO1510
C*		SCFOIS20
C*	EגHTH(I.J) - PRACEICS CF CCMPCNENSS SHIPYED ON EHEAGERCY BASIS	SCPO 1530
c*		SCFO1540
C*	TUF(L.J) - TELECPENATOE UTILISATIUN FAACIION EY COAPOAENT (I.J)	SCPO1550
c*	CESESC(I) - Max. MUMPEA JF STRIPS SEEVED BY CRaylea	SCPO1560
c*	CUF(I) - CEAWLER UTILİtijch factor br bachiae (I)	SCP01570
c*	EOSTAP - MJAEEA OE STRIPS IN SCF (AUITIPIE CP 14)	SCPO1580
c*	BERC - RECUFGISG AACHI LE REPLACEAENT PARTS COST (\$)	SCPO1590





```
 SCFDC=PACLC
 SCP03190
C* CALL SIZSCF TO find the mo. OP STR:PS REEDED TO GET SPECIEIED OUTpOT
 CALL SIZSCE (SCPDC,CUT PUT, MOSTEP,SPSCAP)
 scF03200
 SCF03210
C* CALl Subrculime wabehousz, peplacealat parts, Support equipaEut Scpo3220
C* (HHEPSE) TO CCMPUTE VABIABLES PEOA ERPC CA IE COAMOM ABEA SUBCST SCF03230
 CALL HBGPSE(VCIEM, SCFDC, DCAUYO)
 SCF03240
C* calculage compuemy iatmbneciate data &ud paint it ScF03250
 DO 50 I= 1.HOHACH
 MCTI=\C{(1)
 DO 57 J=1, &CTI
 IF(BCPALL(1,J) .LT. .0051) G0 20 56
 IP(RRCODE (I,J) : BQ. 3) GC T0 53
 MOSEAK (I,J) =TC EIDP (I,J) * SOBA
 CO IO 57
 53 IFIRECTIA(I.J) . IF. 00010 GC IO 55
 MOSFAE (I,J) = (TCFIDP (I,J) *RECTIR(I,J)/
 (365.0*24.0*DELIV))=SOBR
 55 60 IC 57, MOSPAE (I,J) =TCEIDP (I,J)
 55 C0 IC 57, m) =TCEIDP (I,J)
 60 IC 57
 mOSPAB (I, J)=0.
 CCailmue
 conilave
 dFITE (OUT, 70)
 SCP03260
 SCF03270
 SCP03280
 SCF03290
 scr03300
 SCF03310
 SCF03320
 scr03330
 SCP03340
 SCP03350
 ScP03360
 SCPe3370
 SCF03380
 SCF03390
 SCP03400
 57
 POadAT(11x,'IAELE OP STATION DUTY CYCLE (ST ATDC). PGACTIOM OF -.
 6 -EEPLACEMENIS OEIAIMED CY AB EMEPGEGCY EASIS(EARTA)!%/
 SCP03410
 SCF03430
 SCP03440
 11x.'cunfunemt avegaid failuag emplacemeats it mabehouse ". ScP03450
 'at blginaing of delivesy pegioc(mospaf). nunaEa of", SCP03460
 11x.'CEANLSKJ(XCCEAU). CEAALEE UTILIZATION FACTOE(COF). % SCP03470
 'number CF IEIEOPEbafCES(NOTELE). IELECPERATOR'/ SCP03480
 11x,"UIILI2ATION FACTOR (TUFI, NUMEEF OF REEAIR AUTCMATOAS', SCP03490
 ' (acautc). kumeza of cijanime machimes(moclm)."/ SCF03500
```




```
 11x, (NChua2). fok infivicual componeats of a machine !. . Scpo3530
```



```
 waite(cut.75)
 SCPO3550
```




```
 & 4x."ncrue2"//)
 SCF03580
 DO 88 I= 1, BOMACH
 SCF03590
 MEITE(OUT,G0) (HAGES(I,K),K=1,10)_AACBDC(I)
 MEITE(OUT,G0) (HAGES(I,K),K=1,10)_AACBDC(I)
```



```
 NCTI=NCT(I)
 DC 87 J=1,.\CII
 SCF03620
 scP03630
 SCP03640
 MRITE(OUT,85) (NAMEC(I,N,K),K=1,6), ST, NOCRAD(I), SCP0364D
 STATDC (I,J),EARTH(I,J),MCSEAZ(I,J) &NOCRAN (I), SCPO36SO
 CUF(I),YOTELE(I,J),TJP(I,J), HOAUTO(I,J), HOCLN(I,J) &SFO3660
 FORBAT(SX,0A4, 1X,P7.5,3X,Y6.4,3X,F9.1,4X,P4.0,4X,P5.3, SCPO= io
 6 4X,P5.3,4X,F5, 3, 2X,F4,0,6X,F3,0,6X,F6.4,6X,F6.4) SCF03670
 87 CONTIAUE
 SCP03700
 88 CONTINOE
SCF03710
```

C* Calculate and priat hch-becurbige diaect costs
BACIIE $=0$.

        =0.
        RAyDD=0.
        bacass=0.
        -
        DO 93 I=1, VOEACH
            HCII = NCI (I)
            CC \(92 \mathrm{~J}=1, \mathrm{HCTI}\)
    
G.A EDE $=$ RA EDD © ED (I , J)


Ccsisise
COATIBDE


AACPCW = EACECH* SCFDC* ( $1.0+$ FLCT)
SPA=AACPOLTSPADKK

URIIE(CUI, 95) HFECC, MACHIB, EAMED, MACTEH, SPA

* 1x, ${ }^{\circ}$ Total ncheicuriniag diaect cost is $5^{\circ}$ efi3.0/
+ 6x, 'JaCHIVES: \$1.E12.0/



C* CALCULATE AND PBINT HO甘-RECURRIMG IMDIEECT COSTS SCFO3980
$\because O L A B=0$.
POHAB=0.
alisaz $=0$.
SASAR $=0$.
EXPAB $=0$.
EXCAB=0.
DO 98 I=1, BOzach
4CII=MCT(1)
DO $97 \mathrm{~J}=1$, HCTI




EXECABEEXPCAR + YOAUIO (I, J) *AUTEXP (I, J) *AOTEXC (I, J) *
YOCLB (I, J) *CLBEXP(I, J)*CLBEXC(I, J) SCF04120
SCF03720
SCP03730
SCP 03740
SCF03750
SCF03760

$\bullet$
cCATIGUE
costinue
SSCFC=NC STLR/14.0*STC VS* STCKG V*STCDKG
SSCFC $=\mathrm{NC}$ STER $14.0 *$ STC VS* STCKGV*
SACC $=V C 1$ IH*VCLEM*STCKGV* STCERG
SCFSIC=SSCFC+SACC


HSEACSTEP*NSTST + YSRD
BOXCST=EOXESFNCSIER/14.0
HSFACSTEP*ASTST + SSRD
BOXCST=
CEAMLR = (NUCRAW + PAKCRW) *CRHCST + CRNRO

SCPO 3770
SCF03780
SCP03780
SCF03790
SCF03800
SCFO 3810
SCFO 3820
SCF0
SCP 03830
SCP 03830
SCFO3840
SCFP 03850
SCPO
SCPO 3860
SCP 03870
SCPO3880
SCF 03890
SCF 03890
SCFO3900
SCF03910
SCF03910
SCFO 5920
SCF 03930
SCF 03930
SCP0
SCPO
SCP03950
SCP03960
SCPO3960
SCF 03970
SCP03990
SCP039 90
SCFO4000
SCF040 10
SCP040 20
SCPO4O 20
SCFO4030
SCPO4040
scroseso
SCP04060
scF04070
SCF04080
SCRC4090
SCP 04100
SCF 04120
98
SCPO4130
SCF04170
CC=CCSHAS* HA BDKG +CCHCST+CCRD
SCPO
SCP04190
SCP04180
SCFO4200
SCPO4210
SCF04230
SCEP04240

	$\begin{aligned} & \text { BERAUT }=0 \text { - } \\ & \text { CLNAAC }=0 . \end{aligned}$	$\begin{aligned} & \operatorname{SCFO4250} \\ & \operatorname{SCPO} 0660 \end{aligned}$
	$00103 \mathrm{I}=1$ ，NCMACH	SC804270
	NCTI $=$ NCT（I）	SCP04240
	D0 102 J ，1，NCTI	Sc． 04290
	IP（HCAUTO（I，J）．LI．． 000 it $\operatorname{AUTED}(1, J)=0$ 。	SCP04300
	1P（SCCLH（I，J）．LT．．00C1）CLARD（I，J）$=0$ 。	SCFU4310
		SCFO4320
		SCFO4330
102	CCatixue	SCF04340
103	CCBTIMUE	SCP04350
		SCP04360
	HABSAS＊HABKGE＊SCPCEN	SCP04370
	BAB＝HAEAD HA BMAS＊HABCKG	SCP04380
		SCF04390
		SCP04400
	－＋（NUTELE＊TEIPOW）＋PCWAB	SCF04410
		SCF04420
	MPSPA＝（HPSCPP＊EAEECH）＊SPADKM	SCP04430
		SCFC4440
		SCP04450
	－（NDCEAM＋FAKCRH）FCEHMAS（NUTELE中TELMAS）＋（MASAR）	SCF04460
	APSCFI＝NP SCFH＊TCAEGO	SCF04470
	HABT＝HABMAS＊「CAIGGO	SCP04480
	20HTOT $=$ HACPOH＋N PSCFP＋BABPOH	SCP04490
	SPAHAS＝PC HTCI S PAGH	SCP04500
	SPAT＝SFAMAS＊TCALGC	SCP04510
		SCP04520
		SCPO4530
		SCF 04540
		SCFO4550
	6 ／365．0＊ES5NAS＊＊PER11	SCP04560
		SCF04570
		SCF04580
		SCF04590
	6 TELECP，REPAUT，CI SHAC，HAE，NPSPA，NPSCFT，HAET，SPAT，SETEP	SCP04600
105		SCFC4610
	＋6X，${ }^{\circ} \mathrm{NONPKODUCTION} \mathrm{SCP} \mathrm{EQUIPMENE} \mathrm{PEOCUEEAENT/AED} \mathrm{COST:} \mathrm{S*.P12.0}$.	SCF 04620
	＋11X．SCF STKUCTUEE：\＄＇．F12．C／	SCF04630
	＊118．＂WAREHOUSE： $5^{\circ}$ ，P12，0／	SCF04640
		SCF04650
	＋118．＇EEPAIR HONRSHOP：\＄${ }^{\circ} \mathrm{F} 12.0 /$	SCF04660
	－11x． $\mathrm{HICKORRCCESSOES/SENSOKS:} \mathrm{\$ ".E12.0/}$	SCF04670
		SCF04680
	，11x．＊CEAsLEaS：\＄＇．E12．0／	SCP04690
	－11x．＇TEIECPEGATOLS：3＇．F12．0／	SCF04700
		SCP04710
	－11x．${ }^{\text {＇cheleasing sachines：} 50 . \mathrm{P12.0/}}$	SCP04720
		SCP04730
	－6X．＇NCAPRODUCTION SOLAB POWER AERAY PROCDFEMENT：\＄＊P12．0／	SCP04740
		ECF04750
		SCP04760
	＋6I．${ }^{\text {SCLAR POUEE AREAY TRANSPORTATIOE：SU．P12．0／}}$	SCP04770

```
 * 6X, 'CCSI TO SET UP SCP: $0.512.0%
C* CALCULATE AND PGIET AMNUAL EECUERING DIRSCT COSTS
```



```
 HUYSCL=HUASC*6AGE$365.0%24.0
 HUBR= (UOHOM2+SESTAF) % 3.0
 UUARL=HUSF*WAGE* 365.0*24.0
 SC\piू=(SCE-1. G) * (Hu#SC*H0aR)
 SCAWL=SLE#*NAGE*365.0*24.0
 AACBPC=BKPC/EELIV
 MACRPT=EBPT/DEIIV
 BACEXP=0.
 GACEXT=0.
 DO 108 I=1,NCHACM
 HCTI= MCT (1)
 DC }107\textrm{J}=1,\textrm{RCII
 HACEXP=#ACEXP+ EOST&P* (HOCOEP (I,J)/TTEPE(I,J)*
 EXPEED(I,J) FEXPCST (I,J) &SCFDC*365,0*24.0)
 #ACEXT=HACEXT* YOSTAPO (HOCOHP (I,J)/TYPE (I,N)O
 6 EXPEXD(I,N)*SCEDC*365.0*24.0*&CARGO)
 8
107 CCNTISUE
108 COBEINLE
 BECD=HUASCL + HUSRL + SCE WL + MACRPC*AACRPT + MACEXP *HACEET
```



```
 FCRGAT(//1X, 'ICIAL ANRUAL bECUESING DIRECT COST IS . S"P12.0/
 86x,"HUYA! SUPERVISOKY CCNTAOL LABCE: $*,P12.0/
 66x."BUAAN EEPAIE LABCR: $".P12.0/
 86x.0SUPROKT CREW LABOR: i'.P12.0/
 86X, HACHIAE EEPLACEMENT PAETS: $'.812.0/
 SN S.P12.0/ SCF05060
```



```
 86%."MACHIBE EXPENDAELES TAAMSPORIATICN: $*.P12.0) SCFUSO80
C* CALCULAIE AKL ERIMT ANAUAL aECUERIMG IXIIRECT COSTS SCF05090
 CONS=SCFCKW*CCNSUN* 365.0*24.0*CC:FCST
 CCBTA=SCECNHFCCNSUM*365.0*24.G*TCARGO
 CREHIG=SCECZ##IEAIN
 CEENTK=SCECKN*ASTMAS*FCTY5*TRER
```



```
 * +(CCEY?*CCEXC) + (NUHUM2*GSEXP*ESEXC) + (HOSTKP*MSEXP*MSEXC) +
 * (NUCFAW*PAXCEM)*CEWEXP*CENEXC* (NUTELE*TELEXP*TELEXC) +EXPCAE)
 NPSEXT=TCAKGO* 365.0*24.0* ((NOSTEP/14.0%STCEXP) + (VOLW&*WHEXP)
 * +(CCEXP) + (NUHUY2*RSEXP) + (NOSTRP*ASEXP) + (NOCRAW+ PAKCEN) FCGNEXP
 * * (NOTLLE*TELEXP)* (EX\AR))
 RECIN=CONS+CGNTN CFEHTG+CEEWTH+NPSEXP+NPSEXT
 WGITE(OUZ, 115) FECIH,CCNS,CCNTN,CGEUTG,CEEWTH,MPSEXP, BPSERT
 PCRMAT ///1X,'TOTAL AKNUAL RICURAING INDIEECT COST IS S*.P12.0/
 EER.'CCLSUMEABLES: $',F12.0/
 &%:.こOMSUEZARLES TRAMSPORTATION: se.F12.0/
 foc!:"CE&H ThaINING: $*.P12.0/
 LGr. C&EN IhANSPORTATION: SE.F12.0/
 &Gr.'YUHPSODUCTION SCP EXPENDABLES: $%.P12.0/
 6%:. "NONPEODUCTICN SCF EXPENDAELRS TEANSPORTATION: $0,P12.0)
C* -SOLAEE DISCOUNTED LIFECYCLE COSI,YEARLX EEFOFBLSHAENT PARTS GASS
r* (8jELACEOENTS EXPENDAELES). AND PRINT OTRER RELEVABT PARABETERS
```

SCPO4780
SCF04790
SCP04800
SCF 04810
SCF04820
SCP 04830
SCPU4840
5CP04850
SCP04860
SCR04870
SCF04880
SCFO4890
SCF04900
SCP04910
SCFO4920
SCE 04930
SC FO4940 SCEO4950 SCF04969
SCP04970 SCFO4980 SCP04990 SCP 05000 SCEOSO 10 SCEUS020 SCFOSO 30 SCP0S340 SCF05050 SCF05060 SCF05070 SCFU5080 SCF05090 SCFOS100 SCEO5110 SCP 05120 SCFO5130 SCFC5140 SCFOS150 SCE05160 SCE05170 PSCEOS:80 SCF05190 SC:05200 SCFOS210 SCPG5220 SCF05230 SCFO5240 SCP05250 SCP05260 SCP05270 SCPC5280 SCPOS290 scr05300

```
 NHPPM=ARFFT/ICAKGO SCF05310
 LIPCST = (NAECD+NKECIH) +(RECD* BECTH)*(1.0-(1.O+DR)** (-LIFE))/DDR SCP05320
 - -NRFFC*{1.C*DR** (-LIFE) SCP05330
 SPSCST=LIFCST/(SESCAP*LIEE)
 EEFURE=0.
 DO 123 I=1, NCSACH
 BCTI = SCT (I)
5001
20
122
1 2 3
 CORIINOE
 BEFURE=EEPURE* (HACEXP*BPSEXP)/TGCABGO
 WEITE{CUT, 125) LIPCST,SPSCST,SPSCAP,SCPDC,ASYDC, HCSTRP, PSETUP. SCFOS480
 * SETVP,EERURE,TOTBAS,AACMAS,NPSCEH,HABHAS,SPAHAS, ROHTOT,HACPON, SCF05490
 - YESCFF SCFOS500
```



```
 * HOAS,SCEH . SCFO5520
 FCAMAT(*':.21X,'SOLAR CELL FACTORY MAJOR COST DRLYIME PACTORS*/// SCFO5530
 * 1%.'LIFECYCIECCST: $'.F12.0/ SCF05540
 * 1x."COST OF SCF/SMF PES SPS PACDUC3D: S0.P12.0/ SCP05550
 * 1%.'NUMEEKCE SPS RHODUCECPEE IEAE: eF4.2/// SCP05560
 * 1X,.SCE LUTY CYCLE: .,P5,4// SCF05570
 * 1X.'ASSIMRLY ORERATION CUTY CYCLE: 0.F5.4/ SCE05580
 * 1X, MUMEER OE PRODUCTION STEIPS "F4.O// SCP05590
 * 1%,"PEOPLE TO SET UP SCF/SMF: .F4.0/ SCP05600
 + 1X, 'COST TO SET UP SCE/S\F: $'.F9.0// SCP05610
 * 1X,'YEARLY REFURBISIANENT PABTS (KEPLACEBENTS+EXPENDABLES,EG): * SCE05620
 * P10.0/
 * 1X.'GCTAL SCE/SME MASS(KG): % P10.0/ SCP05640
 SCP05630
 * 6X."PFODUCTICN MACHINERY MASS(KG): .P10.0/ .SCPC5650
 * 6X."RC! PAOLUCTION EQUIPMENT MASS (KG): "F10.0/ SCP0S660
 * 6X." पAEITAT MASS (KG): %F10.0/ SCF05670
 +6X.'SC&AH POHEF AhEAY iASS(KG): % P10.0// SCPC5680
```



```
 * 6X."YFCCUCTION MACHINEEY POWER(KH): .F10.0/ SCF05700
 * EX.'NCN PRGDUCZION EQUIPMENT POWER(KN) &P10.0) SCP05710
```



```
 * 1X."SCF HAKEHOUSE VOLUME (CN): ©P7.0/
 SCF05730
 * IX,'MASS UF BOIFEA EERLACEMENT PABTS IN UARERODSE(KG): 0.P7.0/ SCP05740
 * 1X, 'CCST OF EUEFEK EEOLACEMENT PABTS IN WAREHOUSE $*.P12.0// SCF05750
 * IX,'NUMBER OF TELEOPERATCRS: ,F4.0/ SCF05760
 * 1X.'NUAPER OE CRALLERS:".F4.0/
 * IX,'TOTAL SCE/SAP CEEK: ".P5.0/
 * 6X.'SUFEHVISORY CONTROL CREH:'.P5.0/ SCP05790
 P5.0
 * 6x.'RERA
 + 6X.'SUPFOFT CREU: ©,P5.0)
 STOP
 ESC
 SCP05810
 SCP05820
 SCPO5830
```

	$\begin{aligned} & \text { SCF05840 } \\ & \text { SCP058S0 } \\ & \text { SCP05860 } \\ & \text { SCPG5a70 } \\ & \text { SCP05880 } \end{aligned}$
Subicutise fererg	SCFO5890
IHPLICIT REAL (I, $\mathrm{H}, \mathrm{N}$ )	SCF05900
IETEGER NCTI, A (aACH, FILCODE (20, 15), NCT (20), CAHNDL	SCP059 30
	SCP05920
	ScF05930
- CRSEEV(20), $\operatorname{COST}(20,15), \operatorname{MASS}(20,15), \operatorname{VCLOSE}(20,15)$	SCP05940
+ HUTIBE(20,15), FCR (20,15), CRS (20, 15), RECTIM $(20,15)$ 。	SCP05950
	SCP05960
- EOHUM $1(20,15)$, NOHUS2 (20, 15) , TCPIDP (20, 15) , TUP $(20,15)$, CUF (20)	SCP05970
COMAOB NCCCMP.TYPE,MAIAT, KRCCDE, NOFAIL, TCTIME, HCSTRP, MONACH,	SCF05980
	SCF05990
- EAHTU, TESERV, CRSERV, TUP, CUP.	SCF06000
- COST, MASS, VOLUME, HOTIAE, FCE, CRS, RECTIA, TPER,TCAEGO, AH,	SCF 06010
	SCF06020
	SCF06030
AVEAII $=20$.	SCFO6040
CNHNDL = SCEF*AYPAIE	SCP06050
QFEP=0.	SCP06060
IDUMAY = I MT (CNUNDL + 1.0 )	SCP06070
LC $2 \mathrm{~K}=1.150 \mathrm{EMY}$	SCF06080
K $=\mathrm{K}-1$	SCF06090
Z $=$ FIOAT (K)	SCF06100
AFEF=QiPEF+POISSB ( 2 , AYPAIL) © (1.0)	SCF06110
$K=k+1$	SCF06120
2 CONTINUE	SCFU6130
DO 3 K=IDUnMY, 33	SCF 06140
2=ELCAT (8)	SCP06150
MPEF=NPEF+POISSN(2,AVPAIL) * (CABMDL/Z)	SCP06160
3 CCATINUE	SCP06170
DO 7 If 1, NCMACH	SCP06180
NCTI $=$ 』CT (I)	SCP06190
DO $6 \mathrm{~J}=1$, NCTI	SCF06200
IP ( (RECCDE (I, J) .EQ, 3) . OR. (SOPAII (I, J).LT. . 000 1) )	SCF06210
- GO 104	SCP06220
EAKTH (I, J) $=1.0-$ NPEE	SCF06230
GOTO 6	SCPO6240
$4 \mathrm{ESETH}(\mathrm{I}, \mathrm{J})=0$.	SCF06250
6 CCNTINUE	SCP06260
7 CONTINOE	SCP06270
RETOA	SCP06280
END	SCP06290

c

	$\begin{aligned} & \text { SCF06300 } \\ & \text { SCF063110 } \end{aligned}$
* HCPAIL, MACHDC,STITEC,PROLC.ASYEC)	SCP06320
InPLICIT $4 E A L$ ( $1, \mathrm{H}, \mathrm{N}$ )	SCF06330
	SCF06340
DIAENSICN MACHDC (20), STATDC (20, 15). 120	SCF06350
+ HOCLUS(20) , NOFAIL(20,15)	SCF06360
PRODCE1.0	SCF06370
LC $6 I=1, E A D P F L$	SCP06380
CALL LCMACH(I, HACHDC (I) ,STATEC, RCT, HOCOAR , 5ATDRE, HOCLUS. IBC([E, $4 C F A I 1)$	SCP06390
PRODC=PRODC* $B A C H D C(1)$	SCP06400
6 CCITIADE	SCP06420
ASYDCaHACALC (EHEPRE)	SCP06430
IDOABY = EMEPRD+1	SCP06440
DO 11 I=IDUAHY, NOMACH	SCP06450
CALL DCAACB (I, HACHDC (I). STATDC, BCT, BOCOHR, SHIDRH, HOCLOS,	SCP06460
ERCOLE, HOPAIL)   A5IDC=ASYDC*HACHDC(1)	SCP06470
CCuTIMuE	SCP06480
¢ETH8	SCF06490
E5E	SCF06500

$C$

```
 SUBROUTINE DCHACHII,MACHCC,STATDC,NCT,NCCOAR,SATDHM,NOCLOS.
 * RECCEE,SCFAIL)
 IHELiCCJT REAL (L,B,B)
 INTEGEK NCTI, XCT(20),NINC,SHOT,ERCODE (20, 15)
 DIGENSICN NOPAIL (20,15), STATDC (20,15),NOCOQP (20,15), HOCLUS (20).
 * SJT.*N(20.15)
 GACHDC=1.0
 BCTI=&CT(I)
 DO 8J=1,NCTI
 IP(NOFAIL(I,N).LT. .0001) GO 20 7
 CAII [CSTAT(I,J,STATDC(I,J),RBCODE (I,J),NOPAIL (I,J))
 IF(INT(STATDC{IENJ).EN. I) 60 TO %
 IE.INMT(NCCCNP(II,J)) EQ. 1) GO.706
 SCP06650
 IP(AES(NCCCMP(I,J)/NOCLUS(I)-SHTDHE(I,J)).LT. .001) co T0 4 SCP06660
 CIUSEC=0.
 SHUT=INT(SUTDWN (I,J))
 NIEC=IHI (NCCE YR(I,N'N/NOCLUS(I))
 DC 2 K=SHOT, Ex,iC
 K=SHOT, KINC:OLNDIS(K,NINC,STATEC(I,J))
 2CCNTINUE SCP06720
```



```
 4 CLUSDC=STATDC(I,J)**(NOCOHP(I,J)/NOCLUS (I))
5 MACHDC=HACHDC*CLUSDC**(NOCSUS(I)) SCF06750
 GC TC 8
 GACHDC=MACHDC*STATDC (I,N)
 GC TC 8
 CcyTIBLE
 METOA& SCOM
 SC706520
 SCP06530
 SCF06540
 SCP06550
 SCF06560
 SCF06570
 SCP06500
 SCF06580
 SCP06600
 06600
 SCP066 10
 SCP06620
 SCP06630
 SCF06640
 SCF06670
 EこP06680
 SCF06690
 SCF06700
SC806760
6 SCF06770
7 STATLC(I,J)=1.0 SCR06790
8 CCHTIBLE SCP06800
 1&[SCPO6820
```

C

```
SUBROUTINE DCSTAT (I,J,STATBC,RRCODE,MOFAIL)
ISPLICIT REAL (I, M,B)
IMTEGES GBCOLE
IFIR&COCE EEQ. 3) 60 TO 3
 IF(&ERCCIE.EC. 21) .C5. (FBCODE.EQ. 22)) CO TO 5
 CALL a&CI (1, J, BOLTIN)
 STATCC=1.0-NCFAIL*GOLTIN/(365.0*24.0)
 sETUBA
3 STATEC=1.0
BETURW
5 CALL BRC2 (I,J,BABT IG)
 STATDC=1.0-NOFAIL*&ANTIA/(365.0*24.0)
 GETURA
EETOR
```

SCF06830 SCFU6840 SCP 06850 SCP06860 SCP06870 SCP06880 SCP06890 SCP06900 SCP06910 SCP06920 SCP06930 SCP06940 ScPn6950 SCP06960 SCP06970

SUBKOUTIUE EECI (I, J, FCLIIA)	$\begin{aligned} & \text { SCP }^{\top} \quad 780 \\ & \text { SCFi,: } 90 \end{aligned}$
InPLICIT SEAL ( $\mathrm{L}, \mathrm{M}, \mathrm{H}$ )	SCPL,000
IHTEGEE EECCEE (20, 15) , KCT (20) , NOMACA	SCP07010
	SCP07020
+ TCIIME (20,15), NCSTEP (20, 15), EAKSH (20, 15), IESESV(20,15).	SCF07030
- CESEEV (20), $\operatorname{COST}(20,15), \mathrm{HASS}(2 \mathrm{C}, 15), \mathrm{VCIUSE}(20.15)$.	SCP07040
- HUTIME(20,15), FCR(20,15), CTS $(20,15)$, GECTIM 20.15$)$.	SCP07050
- NOAUTU(20,15) , NO-? (1 26.15$)$, NCTELE (20, 15) , NOCEAK (20).	SCPO7060
	SCP07070
CCASCN NCCCME, TYPE, MAINT, BHCCDL, HOEAIL, TCIIME, NCSTRP, NO甘ACH,	SC207080
	SCP07090
+ EAETH,TESEEV,CBSERV,TUP,CrF.	SCP07100
+ COST, MASS, VOLUAE, HUTIME,FCR,CRS, EECTIM, TPEE,TCARGO, AH.	SCF07110
	SCPO7120
	SCFO7130
	SCP07140
+ (TCIIHE (I, J) + TEANT)	SCP07150
TELE14 =T 玉ME14/(365.0*24.0*UF)	SCP07160
IESEGV(I, J) = RNCOFF(14.C/TELE14..5)	SCP07170
IP(TESERV(I,J) .GT. ANSTGP) TESEGV(I,J) =ANSTRP	SCP07180
$\operatorname{TUF}(\mathrm{I}, \mathrm{J})=($ TESEIV $(I, J) / 14.0) * T I M E 14 /(365 . C * 24.0) ~$	SCF07190
AVETT=TCTIME (I, J) +THAST	SCP07200
LAMRLA $=$ UF/AVEBT	SCF07210
GCLTIM = ODEUE (AVEET, LA EBDA) + ETT*EARTH (I, J)	SCP07220
betury	SCP07230
EHD	SCF07240



```
C
 SUBACOTINE SIZSCF(SCPCC,OUTRUT,NOSTAR,SPSCAP)
 1mplicIT bEAL (L,H,N)
 MOSTMP FFLOAT (INT (OUTPUS/ (365,0*24.0*51.0*252.0/1.17*SCFDC))
 IF(NOSTAP/14.0-PLOAT (IET (NOSTRP/14.0)).GE. .5) GOTO6
 MOSTAP=PLONT (IGT (NCSTEP/14.0))*14.0
 GO T0 %
6 GOSTAP=FLOAT {INT(NOSTRR/14.0) + 1) #14.0
 8 SQSCAPa (YCSTEE*SCPDC* 305.0*24.0*51.0*252.0/1.17)/0uTPOT
 BEI0RY
 85C

EEAL AB LABEBA
 ScP0e9 10
nerven
SCP00920
Een
scre8930
EEAL FBECTIC: FCESSM(X.I)
scraesta
ScP08950
genk E.E.E
ce09960
fREA \(1 / 2.71828 /\)
 SCP00870 SCP0 0980 ScP08990
ER scro9000
c
Real function fact (z)
S:P090 10
SCP090 20
```

SCP09030

```
IHIEGES I.
\(\begin{array}{ll}\text { IHEEGES I.E SER } \& & \text { SCP09040 } \\ \text { BEAL }\end{array}\)
PACT=1.0

BC \(10 I=2.5\) FACZ=FACT+FLCAT (I) SCF09050 SCFC9060 SCP09070 SCP09080 Scr09090
10 CCBTIMUE SC209100
EETUBR
SCP09110
ERE
SCF09120
c
c

SCF09130
SCP09140 SCP09150
REAL FUHCTIO: EIGDIS (\(\mathrm{A}, \mathrm{K}, \mathrm{P}\))
IUTEGE8 M.K
REAL \(P\)

- (P** 2\() *(11.0-F) *((N-K))\)

RETUR:
EAD SCF09170 ScP09100 SCP09180 SC809190 SCF09200

GEAL FULCTIC: RADOFE (B.EAX)

EEAL R. BAX
If (N-PLOAT (INT (M)).GE.HAX) 60 TO 4
BSECEP=FIOAT(IET(B))
AETURE
- BEDCEEFELOAT(IXT(A) - 1)

EETUBA
EEL

SC809210
SCF09220
SCP09230
SCP09240
SCP09250
SCP 09260
SCP09270
ScP09280
SCF09290

```

TILE: पARIATE DATA A

```
```

BOBC: ICy IGELAMTEB

```
BOBC: ICy IGELAMTEB
COOLI#G SYSTEM
COOLI#G SYSTEM
EB 60:
EB 60:
EILAmEuT GAGAzImE
EILAmEuT GAGAzImE
COOLI*G STSTEE
COOLI*G STSTEE
EB GU:
EB GU:
gILABEMT MAGAZIME
gILABEMT MAGAZIME
COOLIEG SISTEM
COOLIEG SISTEM
PBOSPHORUS ICB IGELAIMER
PBOSPHORUS ICB IGELAIMER
EB COB
EB COB
FILAaEMT BAGAzI:E
FILAaEMT BAGAzI:E
COOLIEG STSIE:
COOLIEG STSIE:
EB GUM
EB GUM
FILAEEMT EACB8IEE
FILAEEMT EACB8IEE
SLAB PEEDER
SLAB PEEDER
HASE
HASE
GASK GUIDE ARD ROLLUP
GASK GUIDE ARD ROLLUP
gaHEL EAPPLE
gaHEL EAPPLE
SIDE BAFFLE
SIDE BAFFLE
SIDE EARPLE GOIDE
SIDE EARPLE GOIDE
COOLIBG SYSTEM
COOLIBG SYSTEM
EB G0%
EB G0%
FILAGEHT &AGAZIEE
FILAGEHT &AGAZIEE
COOLIMG STSTES
COOLIMG STSTES
zaSER
zaSER
GGYETOU EAMF MAGAZINE
GGYETOU EAMF MAGAZINE
GOILE BCLLERS
GOILE BCLLERS
SHIELD
SHIELD
ELECTgOSTATIC WELDEA
ELECTgOSTATIC WELDEA
IETERCOSBECT FEEDER
IETERCOSBECT FEEDER
IMTEECCEMECT RCLL
IMTEECCEMECT RCLL
SEMSCBS
SEMSCBS
VAEIAELE SPEED ROLIERS
VAEIAELE SPEED ROLIERS
0OTCR
0OTCR
GOIDE ROLLEES
GOIDE ROLLEES
ER GgM
ER GgM
PILAEENT HAGAZ1RE
PILAEENT HAGAZ1RE
SLAB PEECER
SLAB PEECER
HASNING DEUICE
HASNING DEUICE
T-SIBIP MASK PACRAGE
T-SIBIP MASK PACRAGE
OXYGE# IISPEMSER
OXYGE# IISPEMSER
PANEL BAPPLE
PANEL BAPPLE
SIDE EAFELE
SIDE EAFELE
SIDE BAFELE GOIDE
SIDE BAFELE GOIDE
SOFT SUGFACE BELT
SOFT SUGFACE BELT
HOTOR/DRIVE
HOTOR/DRIVE
EBD ECLLEB
EBD ECLLEB
COOLING SYSTES
COOLING SYSTES
EB GUN
EB GUN
FILASENT MAGAZIBE
FILASENT MAGAZIBE
SLAB PEEDEE
SLAB PEEDEE
HASKING CEVICE
HASKING CEVICE
E-STAIR GASK PACR:GE
E-STAIR GASK PACR:GE
OTIGEN DISPESSEA
OTIGEN DISPESSEA
RABEL BARELE
```

RABEL BARELE

```
```

TILE: YARIATE MATA A

```
SIDE EAEPLE
```

SIDE EAEPLE
SIDE RARFLE GUIDE
SIDE RARFLE GUIDE
SOET SUAPACE BELT
SOET SUAPACE BELT
HOTCE/DEITE
HOTCE/DEITE
EED SCLLER
EED SCLLER
COOLIBG STSTEB
COOLIBG STSTEB
ACCELERATOR BELE
ACCELERATOR BELE
TABIARLE SREED GOLLERS
TABIARLE SREED GOLLERS
PABEL RESOYER
PABEL RESOYER
PAMEL IMSEETES
PAMEL IMSEETES
PABEL BOPRER
PABEL BOPRER
SEMSORS
SEMSORS
GUIDE RCILERS
GUIDE RCILERS
ELECIEOSTATIC %ELEEB
ELECIEOSTATIC %ELEEB
I\#IESCCEAECT FEEDEB
I\#IESCCEAECT FEEDEB
I\#PESCOMNECT BOLL
I\#PESCOMNECT BOLL
SEBSCRS
SEBSCRS
TARIABLE SPEED RCLLEBS
TARIABLE SPEED RCLLEBS
BOTCR
BOTCR
GUIDE BOLLEBS
GUIDE BOLLEBS
LASEB
LASEB
GRIPTOS LAEE mAGAZIBE
GRIPTOS LAEE mAGAZIBE
GOIDE RCLIERS
GOIDE RCLIERS
SaIEID
SaIEID
StatIONAg% TAPER
StatIONAg% TAPER
STATIC\&Azy TAPE BERILL
STATIC\&Azy TAPE BERILL
CgOSS TARER
CgOSS TARER
CROSS =APE EEFILL
CROSS =APE EEFILL
SOFE GOLLER
SOFE GOLLER
GUIDE GJLLE\hbarS
GUIDE GJLLE\hbarS
CEOSS TAPE HCTCR
CEOSS TAPE HCTCR
G0IDE ECLLERS
G0IDE ECLLERS
VEETICAL DEELECTORS
VEETICAL DEELECTORS
B0I ALTGEAEBT
B0I ALTGEAEBT
BOX LABELIHG
BOX LABELIHG
TRAIIIEG EDGE GUIDE
TRAIIIEG EDGE GUIDE
1000000 25000
1000000 25000

1. 2. 
1. 2. 
1. 0. 
1. 0. 
1. 
2. 

S00000.
S00000.
1.
1.
10.
10.
.025
.025
25000.
25000.
2.
2.
10.
10.
.05
.05
50C0000.
50C0000.
1.
1.
50.
50.
.01
.01
2.
2.
2.
2.
25000.
25000.
1.
1.
0.
0.
10.
10.
10000.
10000.
1.
1.
5
5
0
0
00.
00.
2.
2.
15.
15.
15.00.
15.00.
250
250
1
1
0000. 720.
0000. 720.
1.
1.
275.
275.

1.
0.
20.
1. 5
0.
5.
1.
0.
20.
1. 3
0.
3.1
1.0 .5

```


\begin{tabular}{|c|c|}
\hline \[
0 . .03
\] & 0. \\
\hline 0 - & \\
\hline 0.1 & \(\bigcirc 005\) \\
\hline \multicolumn{2}{|l|}{. 03} \\
\hline 4. & \\
\hline \(0^{8}\) & . 007 \\
\hline \multicolumn{2}{|l|}{. 03} \\
\hline 40. & \\
\hline 15 & \[
\begin{aligned}
& .024 \\
& .00004
\end{aligned}
\] \\
\hline . 03 & \\
\hline \multicolumn{2}{|l|}{2.} \\
\hline -5 & 0.00 \\
\hline \multicolumn{2}{|l|}{. 05} \\
\hline 0. & \\
\hline 20. & \[
\begin{aligned}
& .25 \\
& .001
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{. 05} \\
\hline 2. & \\
\hline 1 & \[
\begin{aligned}
& .005 \\
& 0_{0}
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{. 03} \\
\hline 2. & \\
\hline \(0_{0}^{5}\) & \[
\begin{aligned}
& .003 \\
& \mathbf{o}_{0}
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{. 05} \\
\hline \multicolumn{2}{|l|}{0.} \\
\hline 1. & . 01 \\
\hline -1. & 0. \\
\hline 2. & \\
\hline 5. & \\
\hline - 1 & .00001 \\
\hline \multicolumn{2}{|l|}{. 03} \\
\hline .\(^{6}\) & . 015 \\
\hline 0. & 0. \\
\hline \multicolumn{2}{|l|}{. 02} \\
\hline 25. & \\
\hline \(\cdot_{03}^{1}\) & . 00001 \\
\hline \multicolumn{2}{|l|}{.03 . 00001} \\
\hline 1. & \\
\hline 0.6 & \(\bigcirc 15\) \\
\hline \multicolumn{2}{|l|}{0.02} \\
\hline \multicolumn{2}{|l|}{0.} \\
\hline -5 & 0.005 \\
\hline \multicolumn{2}{|l|}{0.} \\
\hline 0. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline FILE: VAB & .cata & A & Convensamion & HOAITOB STSTE \\
\hline 0. & 10. & 0. & . 5 & . 003 \\
\hline 112. & 0. & 14. & 0. & i. \\
\hline 0. & 3.05 & 0. & . 05 & \\
\hline 1. & 20. & 0. & 0 . & \\
\hline 5000. & 1000. & E. & 50. & \\
\hline 1. & 1. & 14. & 1. & \[
.0001
\] \\
\hline 15. & 211. & 2.5 & . 03 & \\
\hline . 05 & 40. & 0. & 1. & \\
\hline 0. & 10. & 0. & . 5 & . 003 \\
\hline 154. & 0. & 14. & 0. & \\
\hline 0. & 3.05 & 0. & . 05 & \\
\hline 1. & 20. & 0. & 0. & \\
\hline 5000. & 1500. & 1. & 20. & . .005 \\
\hline \(1{ }^{15}\) & 1. & 14. \({ }^{\text {a }}\) & -1 & .00001 \\
\hline 15. & 20. & 0. \({ }^{05}\) & 1. \({ }^{2}\) & \\
\hline 10000. & 1000. & 4. & 300. & \\
\hline 1. & 1. & 19. & . 1 & . 00005 \\
\hline 15. & 11. & 0. & . 25 & \\
\hline . 05 & 0. & 0. & 1. & \\
\hline 1000. & 200. & . 01 & & . 002 \\
\hline 1. & 1. & 14. & & 0. \\
\hline 0. & 22.1 & 1. & ¢ 3 & \\
\hline . 05 & 50. & 0. & - & \\
\hline 5000. & 2000. & . 01 & \(\therefore\) is & 2.5 \\
\hline 15. & 1.5 & 14.01 & & . 00001 \\
\hline . 1 & 150. & 0. & - & \\
\hline 3000000 . & 75000. & 75. & \(\cdots\) & 2. \\
\hline 50001. & 5coco. & 500. & 2. & 5. \\
\hline . 001 & 20. & & & \\
\hline 2000000. & 100000. & 100. & 2. & \(\because\) \\
\hline . 001 & 2.0 & & & \\
\hline 0. & 100060. & 100. & 2. & 2. \\
\hline \({ }_{0} 0.001\) & 60000. & 600. & 2. & 5. \\
\hline . 001 & 20. & & & \\
\hline 5000000 . & 250000. & 250. & 2 . & 5. \\
\hline . 001 & 20. & & & \\
\hline 0.01 & 500000 , & 5 CO . & 2. & 5. \\
\hline 0. & 50000 . & 50. & 2. & 2. \\
\hline . 001 & 20. & & & \\
\hline 0. & 110000. & 100. & 2. & 2. \\
\hline -001 & 20.0 & & & \\
\hline .001 & 25000. & 25. & 2. & 2. \\
\hline 0.0 & 50000. & 50. & 2. & 2. \\
\hline 0.001 & 250.00 & & & \\
\hline .00 1 & 250. & 250. & 2. & 5. \\
\hline \()\). & 25000. & 25. & 2. & 1. \\
\hline \(\bigcirc 001\) & 50. & ¢0. & 2. & 2. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Scay becristallizazion hachine dutt ctele (hachdel 00.99966 & \multicolumn{11}{|c|}{nachine duti ctels (hachdel 00.99966} \\
\hline & eb sum & 0.99966 & 0.0066 & 1725.3 & 1. & 0.285 & 0.0 & 0.0 & 1. & 0. & 0.0 & 0.0 \\
\hline & filament magazime & 1.00000 & 0.0 & 739.4 & 1. & 0.295 & 0.0 & 0.0 & 0. & 0. & 0.0 & 0.0 \\
\hline & cooling sistes & 0.99966 & 0.0066 & 862.7 & 1. & 0.285 & 0.0 & 0.0 & 1. & 0. & 0.0 & 0.0 \\
\hline & \multicolumn{12}{|l|}{} \\
\hline & phospyoris lon isplaytex & 0.59967 & 0.0066 & 1125.3 & 1. & 0. 160 & 0.0 & 0.0 & 1. & 0. & 0.0 & 0.0 \\
\hline & \multicolumn{12}{|l|}{Ahasal nachime duty cycle [hachde] 00.99966} \\
\hline & eb gun & 0.99966 & 0.0066 & 1725,3 & 1. & 0. 285 & 0.0 & 0.0 & 1. & 0. & 0.0 & 0.0 \\
\hline & phlisent gagaziue & 1. 6 cccoo & 0.0 & 739.4 & 1 & 0. 285 & 0.0 & 0.0 & 0. & 0. & 0.0 & 0.0 \\
\hline & cooling sys? \({ }^{\text {ch }}\) & 0.99966 & 0.0066 & 862.7 & 1. & 0.245 & 0.0 & 0.0 & 1. & 0. & 0.0 & 0.0 \\
\hline & \multicolumn{12}{|l|}{} \\
\hline & zogum & 0.54966 & 0.0066 & 3450.7 & 6. & 0.702 & 0.0 & 0.0 & 1. & 0. & 0.0 & 0.0 \\
\hline \multirow[t]{6}{*}{\(\stackrel{ \pm}{\infty}\)} & SLAB FED: \({ }^{\text {a }}\) & 0.59946 & 0.0066 & 1300.3 & 6 & 0.702 & 0.0 & 0.0 & 0 & 0. & 0.0 & 0.0 \\
\hline & MAsk & 1.cecoo & 0.0 & 27.0 & 6. & 0.702 & 0.0 & 0.0 & 0. & 20. & 0.0 & 0.0 \\
\hline & majk guide and gollup & 0.94093 & c. 0066 & 1725.3 & 6. & 0.702 & 0.192 & 0.134 & 0. & 0. & 0.0384 & 0.0 \\
\hline & EAMEL EAPPLE & 1. 00000 & c. 0 & 9070.3 & 6. & 0.702 & 0.0 & 0.0 & 0. & 0. & 0.0 & 0.0 \\
\hline & S10L DAPPLE & 1. cccco & 6.0 & 647.9 & 6. & 0.702 & 0.0 & 0.0 & 0. & 0. & 0.0 & 0.0 \\
\hline & & 0.54984
0.99932 & 0.0066
0.0066 & 1725.3 & 6. & 0.702 & 0.004 & 0.002 & i: & 0. & 0.0004 & 0.0 \\
\hline & & & & & & & & & & & & \\
\hline & \multicolumn{12}{|l|}{} \\
\hline & eb guy & 0.99906 & 0.0066 & 1725.3 & 1. & 0.285 & 0.0 & 0.0 & 1. & 0. & 0.0 & \\
\hline & ETlabent magzine
coling stsiza & 1. 000066 & C.0 0.2066 & 739.4
852.7 & 1. & 0.285
0.28 & 0.0
0.0 & 0.0 & 0 i: & \(0 \cdot\) & 0.0 & 0.0 \\
\hline & coling sy \({ }^{\text {a }}\) & & & & & & & & & & & \\
\hline & \multicolumn{12}{|l|}{cerl cacsscut machine duty crcle (machoc) 00.99933} \\
\hline & 2ASE日 & 0.59933 & 0.0066 & 1725.3 & 1. & 2.290 & 0.0 & 0.0 & 1. & 0. & 0.0 & 0.0 \\
\hline & kryptor lanp argazime & 1.00000
1.00000 & C.0 & 246.5
12.3 & \(1:\) & 0.230
0.200 & 0.0 & 0.0 & 0. & \(0 \cdot\) & 0.0 & 0:0 \\
\hline & & 1.00000 & 0.0 & 12.3
0.0 & 1. & 0.200 & 0.0 & 0.0 & \(0:\) & \(0:\) & 0.0 & 0.0 \\
\hline
\end{tabular}


```

TOTAL MCRESCJEAIMG DIAEC= CCSE IS : 1025776640.
|CHIHES: \$ 8uyzais6.
MACBIBE BESEAFCEAMC EEDELCFEEAE: \& E = 1130400.

```

```

    SOL/8 EOURA AEBAY (EOB PROCuCTIC!): $ 366631368.
    Tozal mCHEECUAEIGG IMDINECT COST IS { 1741493250.
MCMPACJUCTIOS SCF EQUIFAEHT RFCCUESBEAT/EEC COST: S 13830497.j0.
SCF SIEUCFORE: 5 1243500:50.
gaaegcuss: s j9CC25?.
CCSTROL CEBTER: S E2COOOOD.
eEpais mcemshaf: % IC3cacco.
GICROQ3CCESSCRS/SEBSOMS: \& 6890000.
ABEAY SEGINXT SICFAGE EOXES: s % is800.
CEIuLEsS: : 1525Cü00.
TELlGEEEATCES: % 1Eq:24:1.
BCPAIa ACICMRIOsS: % 26303y58.

```

```

    BABESAL PFCCOREMENZ COST: & 16416000.
    COH2ZODUCTIOS FULAB ECUEE ARSIY EECCOBEBEBT: & 5503363.
    ECyPRCEDCIIC& SCF IF)=SPOATAIICy: $ 12S400592.
    GAuITAT SBAYSFCETATLG:. s leqiECGO.
    SOLAR ECNSE ASFAY IEARSPOATAIICB: & 186067200.
    COST TC SET OE SCF: % 46JEACS.
    TCFAL amgjal bECurEigt tigect cost 1S s 197416912.
Guban sugEgYISOEI CONTRGL LABCP: \$ 10117800.
msade aEFAIA LABCF: S gl5ECG.
SUEFOOTCEEY LARCE: S 5S18800.
GACHTS:. EERLACESEMT PAFLS: SN \$ if90S600.
GACHESE EEPLACEMEBE PARIS TFASSRCETATICS: S 196916256.
EACHIGE EMESNCAEIES: S EGE3EG.
GACLISE EXEESEARLES ZFABSECFTATICB: \& 5133307.
TOTAL AMMUAL ȧECOGEING IHDIEFCT COSI :S S E538916.
CCHSONMAOLES: s TEEEEM.
COMSUABABLES TEANSPORTATICB: \& 1655639.
CBRU TBAIHIBG: 5 SMCO.
CBEU TEAIHIBG: S S S4CO. % % % % % COO.
MCXPZCDUCTICR SCF EXPESCABLES: S S 30719.
MCBPAODUCEION SCF EXPENCABLES TRAMSPCEIAIICN: \& 193596.

```
teganal gelt
 BEL?
 GOTOR/DNIPE
 EMO RCRLESS
 E162.
 E162.
\(12=2\).
 IHEPRAL CONISOL S日6.
dt of al aear cohtact
 58 cus
 TILABENa BAGA2adE
 SLab fildota
 246.
 zi7.
 panel eaffle
 SIEE EAFFLE
 SIEE EAFFRE GOIDE
 507.
 507.
 CCCIIMS SYSTES SqE.
 12598.
18.

\section*{}

E8 6uM
EILABEEF MAGAZIME SiAB PkEDEf
EABEL ESTELE
SIDE EAEPLE
SIDE BAEPLE GUIDE aCRCU ICN I.JPLAMIEE COOLIBG SYSTES
368. 3689
E 169
E 15 ES 15
78770 112534. 35.
6162. EE73.

\section*{PULSE BECGYSEALLIZATIOM}
123.
99.
E92.

SCAS EECBESTALLIZATICE
\begin{tabular}{|c|c|}
\hline Es gus & . \\
\hline EILamgat magatiae & 59. \\
\hline COCligg Systeg & 345 \\
\hline
\end{tabular}

\section*{M-dopanz Implantatica}

8 hosphosus jow Inplaztea
\(E 16\).

LHEEAI
EE GO:
EIIAEEST yagazibe
CCOLIMG SYSIEs
62.
59.
-45.
ov Ce al fech: cemact
ES GUN
Filayent magatiag

fasa FEEJR
PaSk GUIDE and sCLLUP ECEO.
fanil eapile
styt baffle
eite gafyle guide
ccoliag sysaea
35.
739.
prCht chatact siniegiag
\begin{tabular}{|c|c|c|}
\hline ee gux & & 2. \\
\hline EItire & dgazike & . \\
\hline CCOL & rsien & 345. \\
\hline
\end{tabular}
cell chossche
\begin{tabular}{|c|c|}
\hline laské & 2uts. \\
\hline geyprici lagr bagaz:eg & 45. \\
\hline goite mcilefs & 12. \\
\hline SHIELD & 0. \\
\hline
\end{tabular}

CEII ImTEaCCyascixay
\begin{tabular}{|c|c|}
\hline ELrGtaoseatic ymidea & 789. \\
\hline IUTEGCCEBECT PEEDEF & 1972. \\
\hline zamEaccasict gchi & 0. \\
\hline SEysces & 7. \\
\hline varIabli speet tolters & 9. \\
\hline HGras & \＄9． \\
\hline cuIse ECLERS & 25. \\
\hline
\end{tabular}
ct of silica optical coyer
\begin{tabular}{|c|c|}
\hline E8 60\％ & 4E＊＊＊ \\
\hline FIEABEAT MAGAzinE & 3¢53． \\
\hline skab PECDEa & EE73． \\
\hline \＃ASEISG CEVICE & E16． \\
\hline S－SIRLP BASE PACRAGE & 67. \\
\hline OITGEM EISEEMSEE & 74. \\
\hline EAMEL EAPELE & 118160. \\
\hline SIOE BAEFLE & 1eceet． \\
\hline SIDE garzle G0IDE & 53. \\
\hline SCET SUAFACE EELT & 0. \\
\hline BCTOA／ESIVE & 2313． \\
\hline ExD EOLIEt & 24ES． \\
\hline CCCIItG SISIES & 6478． \\
\hline
\end{tabular}

17 OP SILICA SU日SIEATE
\begin{tabular}{|c|c|}
\hline E® GaR & 368． \\
\hline BILBYEVI SAGMzINE & －169． \\
\hline SLAB FESD） & ¢915． \\
\hline MASEIHG EEVICE & 616. \\
\hline T－STESP MASR PACEAGE & 58. \\
\hline OXTGES EISEENSE日 & 49. \\
\hline FABEL EAPEL & 16774. \\
\hline SIDE EAEFLS & 112：34． \\
\hline SIDE BAFFLE GUIDE & 35. \\
\hline SCFT SUSEACE EELT & 0. \\
\hline 60toafifive & 3081. \\
\hline EVD ROEIER & 24ES． \\
\hline COOLIMG SYSTEA & 4263. \\
\hline
\end{tabular}

PAEEL ALIGMMEXT 6 gPAGE PABEL IASEETICY
\begin{tabular}{|c|c|}
\hline ACCELEEATCR BELT & 1725. \\
\hline VAdIABLË SPEEC hClLEAS & 76. \\
\hline EAxEL EERCVE日 & \(44 \pm 7\). \\
\hline EAXEL IESLATEG & \％ 18. \\
\hline EXHEL HOPzER & 0. \\
\hline SEMSCPS & 35. \\
\hline GEIDE ECLIESS & ミ70． \\
\hline
\end{tabular}

EA甘EL IHTEBCOMAECTICH
\begin{tabular}{|c|c|}
\hline ELECTBOSTATIC VELDER & 789. \\
\hline IHTERCCNAECT FEECER & 1¢72． \\
\hline INTEECCASECT ECLL & 0. \\
\hline SEMSORS & 1. \\
\hline VARIAELE SPEED ECLIEES & 9. \\
\hline 80\％OA & 148. \\
\hline GUIUE ECLLE日S & 25. \\
\hline
\end{tabular}

\section*{LCagitudisal Coi}
\begin{tabular}{|c|c|}
\hline LASER & 1832． \\
\hline EEIPICS LARE EAGAZIHE & 49． \\
\hline GOIEE EOELEAS & 12. \\
\hline StIELd & 0. \\
\hline
\end{tabular}
mptcy tape applicaiton
\begin{tabular}{|c|c|}
\hline STAEICMAE TAEER & 67. \\
\hline StaFIOMASY IAPE REFILL & 56812. \\
\hline CBOSS TAPER & 4． \\
\hline CeOSS TAPE EEFILE & 7447. \\
\hline & 0 ． \\
\hline COIEE ECLLESS & 49. \\
\hline CROSS EAPE HOTCE & 44. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline COIDE GCLIERS & 68. \\
\hline －ERTICAL DEPGECTCES & 88. \\
\hline EOX ALIGHEEAL & 264． \\
\hline B0\％LAEELIEG & 6. \\
\hline －GALLIHG EDGE GUIDE & 44. \\
\hline
\end{tabular}

SCLAB CELL PACTOEY BAJOR COST DAIVIHG FACTOES
```

LIEECYCIE CCST: 4520S135*0.
CCSI CE SCP/SYI REG SRE 2FCEUCEE: % 22R7Z1184.
MUHEES CE SES PGCLUCZD ELF IEAR; C.99
SCF DUTT CYCIE: . S781
ASSEEJLY CPEEATICG DUTY CYCIE: . 9952
m0HEER OP PGOLUCEICN SIFI2S 252.
PEOELE AC SE: C? SCE/S.EE: 10.
CCST %O SET UZ SCE/SYF: S 46It\L9.
IEARLY EEVURISHEENT PAFTS (REPLACEPEMISGEXPEBCABLES,RG): 1476406.
TOTAL SCF/SEE HASS(KG): JyTE4Z゙6.
EFOLUCTICY .ACHI\#ELY E.sS(NG): ©496544.

```

```

    HAcIEAE HASS(K+j): 164160.
    SOLAE EJAL& AESRY M.SSS(KG): 1eg0672.
    TOTAL SEF/SAR PCALE(NiN): 18606).
PiCEJC!Eご :4CHINIFFY FC\&EF(Kb): 18ミ316.

```

```

    BABITAT PCWEP(Ki): पef.
    SCF YAREHOUSE VULUNE (C%): 11601.

```


```

UHEES OP NELECPERATCHS: 1.
UBEES CF CAJELESS: 54.
TOTAL SCP/SYF CREU:
SUPERYISCPY CCNTECL CEEU: 子3.
SEFALE CNE甘: 3.

```
```

