New Rides to the Moon

October 10, 2019
Dale Skran
Chair of the NSS Executive Committee
New Rides to the Moon

- Review rockets under construction/development that are planned for the next ten years
- Look at rockets that might plausibly be part of a return to the Moon
- Provide a sense as to when they might fly and how successful they may be
- Focus on serious, well-funded projects from reputable organizations
- Don’t discuss vehicles like Delta IV Heavy that are targeted for replacement
And the contenders are ….

- Long March 5
- Falcon Heavy
- SLS Block I
- Ariane 6
- New Glenn
- Vulcan
- SLS Block 1B
- Starship/Superheavy
But first a little background …

• What is the “Sweet Spot” for commercial launch?
 – Geosynchronous comsats weighing under 9 metric tons
 – Ariane 5 ECA (on left) can launch
 • Two satellites totaling 9.1 MT to GTO
 • One 9.6 MT satellite to GTO

• Ariane 5 ECA (expendable) costs $150M
 – Could launch:
 • One 3 MT satellite to GTO AND
 • One 6 MT satellite to GTO

• Prior to SpaceX, Ariane 5 owned the commercial space market
 – “Build-a-rocket” architecture similar to Atlas V
What is “Build-a-Rocket”?
Falcon 9 rains on the Ariane 5 parade

- Customers did not like waiting for a “matchup” between a large and small satellite:
 - F9 only launches one satellite
- F9 (currently) can launch:
 - 8.3 MT to GTO expendable
 - 5.3 MT to GTO reusable
- And costs $62M for 5.5 MT to GTO reusable
 - Block 5 values (prices heading down - $52M)
- F9 has with three modes:
 - Expendable (most capacity, most expensive)
 - Sea landing for first stage (middle choice)
 - Return to launch site for first stage (least capacity; least expensive)
Long March 5: Basics

Similar to Delta IV Heavy

- **Builder:** China
- **Height:** 56.97 meters
- **Lift-off thrust:** 10.6 kN
- **Strap on boosters:** four (Lox/Kerosene)
- **First Stage:** Lox/LH
- **Second Stage:** Lox/LH
- **Third Stage:** None
- **Fairing size:** 5 meters diameter/12.5 meters long
- **Payload to LEO:** 25K kg/55K lb
- **Payload to GTO:** 15K kg
- **Payload to TLI:** 8.2K kg/18.1K lb
- **First flight:** November 3, 2016 (successful)
- **Reusability:** None
- **Current Status:** 2nd flight July 2, 2017 failed; no flights since then; 2019 dubious
- **Planned payloads:** Lunar sample return, space station cores, interplanetary missions
Falcon Heavy: Basics

About 2x capacity of Delta IV Heavy

• **Builder:** SpaceX/USA
• **Height:** 70 meters/229.6 ft
• **Lift-off thrust:** 22.8 kN [just a bit less than SLS Block1]
• **Side boosters:** two (Subcooled Lox/RP1)
• **First Stage:** Subcooled Lox/RP1
• **Second Stage:** Subcooled Lox/RP1
• **Third Stage:** None
• **Fairing size:** 5.2 meters diameter/13.1 meters long
• **Payload to LEO:** 65K kg (expendable)/ 22.9K kg (reusable)
• **Payload to GTO:** 26.7K kg (expendable)/ 8K kg (reusable)
• **Payload to TLI:** 26.7K Kg < X < 16.8K kg (expendable)
• **Payload to TLI:** 8K kg < X < 4K kg (reusable)
• **First flight:** Feb. 6, 2018 Red Tesla Roadster to Mars
• **Reusability:** first stage and two side booster are reusable (2 RTLS; 1 on drone ship)
• **Current Status:** 3 successful fights so far, 4/11/19 Arabsat 6A, June 25, 2019 STP2
• **Current Reuse Status:** All 6 side boosters recovered; no center core recovery fully successful
• **Planned payloads:** AFSPC-44, Ovzon-3, AFSPC-52, ViaSat 3

8 MT to GTO
Reusable covers the Geosync sweet spot for $90M:
Ariane 5 is toast
Note: SLS is an example of the “Build-a-Rocket” architecture
SLS Block 1: Basics

- **Builder:** NASA/USA (Boeing, Orbital/ATK, Aerojet Rocketdyne)
- **Height:** 98 meters/322 ft
- **Lift-off thrust:** 23.4K kN (8.8 Mlbf) \([\text{Saturn V was 7.9Mlbf}]\)
- **Side boosters:** two (Solid fuel)
- **First Stage:** Lox/LH
- **Second Stage:** Lox/LH (Identical to Delta IV Heavy Upper Stage)
- **Third Stage:** None
- **Fairing size:** 5.1 meters diameter/12.8 meters long
- **Payload to LEO:** 70K+ kg (expendable) \([95K \text{ Kg if 2}^{\text{nd}} \text{ stage is counted as payload}]\)
- **Payload to TLI:** 26K kg (expendable)
- **First flight:** Artemis-1 EOY 2020; slip to 2021 expected (no crew); also Artemis 2
- **Reusability:** None
- **Current Status:** Under construction
- **Planned payloads:** Orion capsule; Lunar Gateway construction; Artemis program
- **Cost:** Minimum $500M, $1B to $1.5B per flight depending on what you count
Ariane 6: Basics for A64 Version

- **Builder:** ESA/Airbus Safran Launchers
- **Height:** 63 meters/207 ft
- **Lift-off thrust:** 15.4 kN
- **Side boosters:** four (solid fuel)
- **First Stage:** Lox/LH
- **Second Stage:** Lox/LH
- **Third Stage:** None
- **Fairing size:** 5.4 meters diameter/20 meters in length
- **Payload to LEO:** 22K kg/44k lbs (expendable)
- **Payload to GTO:** 12K kg /26K lbs (expendable)
- **Payload to TLI:** Less than 12K kg
- **First flight:** Second half 2020
- **Reusability:** None
- **Current Status:** First batch of 14 ordered January 2019; on schedule
- **Planned payloads:** ESA payloads, OneWeb, GeoSynch comsats; replaces Ariane 5
Can Ariane 6 Beat Falcon?

12 MT to GTO Covers the Geosync sweet spot and allows two 6 MT satellites to go up at once-

• With 4 boosters, costs 90M Euro for 12MT to GTO (101M $US)
 • This is $45M Euro per 6 MT satellite

• With 2 boosters, costs 75M Euro for 5MT to GTO (84.3M $US)

Compare to $62M for 5.5 K kg to GTO on F9 re-usable
 Falcon 9 wins: $62M < $75M Euro/$84.3M $US

Compare to $90M for 8 K kg to GTO on FH re-usable
 Falcon Heavy vs Ariane 6 is pretty close
BAD NEWS: Ariane 6 in 2020/2021 can’t beat F9/FH in 2019

WORSE NEWS: SpaceX prices will be dropping

EVEN WORSE NEWS: SpaceX is building a new rocket to replace F9/FH
New Glenn: Basics

- **Builder:** Blue Origin/USA
- **Height:** 82 meters/270 ft
- **Lift-off thrust:** 17.1K kN (3.9M lbf)
- **Side boosters:** None
- **First Stage:** Lox/Methane [Seven BE-4 engines]
- **Second Stage:** Lox/Hydrogen [Two BE-3 engines]
- **Fairing size:** 7 meters diameter (23 ft)
- **Payload to LEO:** 45K kg/99k lbs (reusable first stage)
- **Payload to GTO:** 13K kg/29K lbs (reusable first stage)
- **Payload to TLI:** Less than 13 K kg
- **First flight:** 2021
- **Reusability:** First stage only
- **Current Status:** In development
- **Planned payloads:** Five OneWeb, multiple Telesat, Eutelsat, mu Space Corp, and SKY Perfect JSAT, competing for U.S. military launches

13 MT to GTO
Reusable covers the Geosync sweet spot and allows two 6 MT satellites to go up at once: expected to be very competitive with Falcon Heavy. Ariane 6 is toast.
Vulcan
Vulcan: Basics

- **Builder:** ULA/USA
- **Height:** 58.3 meters
- **Lift-off thrust:** 4.9K kN plus solids \([2.2K \text{ kN} \times 6 = 13.2K \text{ kN}] = 18.1 \text{ K kN}\)
- **Side boosters:** 0-6 solid rockets, with 6 exceeds both Atlas V and Delta IV Heavy
- **First Stage:** Lox/Methane
- **Second Stage:** Lox/LH, initially same Centaur stage used by Atlas V
- **Fairing size:** 5.4 meters diameter
- **Payload to LEO:** 35K kg (Vulcan Heavy with 6 SRBs)
- **Payload to GTO:** 16.3K kg (Vulcan Heavy with 6 SRBs)
- **Payload to TLI:** About 7 K kg (Vulcan Heavy)
- **First flight:** 2021
- **Reusability:** 1st stage engines via air-drop; 2nd stage in-space reuse
- **Current Status:** In development; will use BE-4 engine from Blue Origin
- **Planned payloads:** U.S. government payloads, 6 Dream Chaser CRS2 launches
- **Cost:** $100M to $130M; divide by two if two satellites are launched

Vulcan 2021 is competitive with F9/FH in 2019. But SpaceX is not standing still.
SLS Evolution

<table>
<thead>
<tr>
<th>Payload to TLI/Moon</th>
<th>26 t (57k lbs)</th>
<th>34-37 t (74k–81k lbs)</th>
<th>37-40 t (81k–88k lbs)</th>
<th>> 45 t (99k lbs)</th>
<th>> 45 t (99k lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payload Volume</td>
<td>N/A*</td>
<td>10,100 ft³ (286 m³)*</td>
<td>18,970 ft³ (537 m³)</td>
<td>10,100 ft³ (286 m³)*</td>
<td>31,950 ft³ (905 m³)</td>
</tr>
</tbody>
</table>

* Not including Orion/Service Module volume
SLS Block 1B: Basics
(adds Exploration Upper Stage)

• **Builder:** NASA/USA (Boeing, Orbital/ATK, Aerojet Rocketdyne)
• **Height:** 110-111 meters
• **Lift-off thrust:** 23.4K kN (8.8M lbf)
• **Side boosters:** Two (Solid fuel)
• **First Stage:** Lox/LH
• **Second Stage:** Lox/LH (EUS – new stage)
• **Third Stage:** None
• **Fairing size:** 8.4 meters diameter/19.1 meters long
• **Payload to LEO:** 105K kg (expendable)
• **Payload to TLI:** 37-40K kg (expendable)
• **First flight:** Artemis 3/June 2024 – planned lunar landing
• **Reusability:** None
• **Current Status:** Vehicle for Artemis 1 in assembly/test phase; EUS in development
• **Planned payloads:** Artemis missions 4-8, Europa Clipper
Lunar Comparison

• GEO/GTO: The clear winners NOW are Falcon 9/Falcon Heavy
 – New Glenn, Ariane 6, Vulcan would be competitive to FH if flying now
 – SLS is aimed at the Moon, and way more costly
 – Really hard to say whether FH or New Glenn will win

• Moon: Facially, SLS wins with 26MT to TLI
 – LM5 (18MT) [off-limits due to ITAR]
 – FH (<8MT)[reusable first stage]
 – Ariane 6(<12MT)
 – New Glenn (<13MT)[reusable first stage]
 – Vulcan (<7MT)

• But when cost is considered, FH or New Glenn are way ahead
 – But the chunks launched are smaller, and you have to do in-space assembly to get to the Moon

• This is a battle of philosophy
 – The BIG ROCKET vs in-space assembly/re-fueling
... But that isn’t the whole story

- It’s a bird, It’s a plane, It’s …..

Credit: Sam Taylor
SpaceX is building a new rocket to replace Both F9 and FH

That rocket is called Starship/Superheavy

For some reason BFR wasn’t working!

This is a bold play.

Elon is all in.

SpaceX is far ahead now, so they are scrapping their current product line and replacing it with something shiny and new

This is the stuff of legend.

But the really amazing thing is that it is being built out in the open so we can watch.
July 18, 2018 Boca Chica Texas

StarHopper: credit Bocachicagal
August 27 2019 Starhopper 150m flight
July 14, Cocoa, Florida
Second Starship Orbital Prototype Rises: credit Omar Izquierdo and flying_briann
Starship/Superheavy: Basics

- **Builder**: SpaceX/USA
- **Height**: 118 meters
- **Lift-off thrust**: 72K kN (16M lbf) [Saturn V was 7.9M lbf]
- **Side boosters**: None
- **First Stage**: Subcooled Lox/Methane
- **Second Stage**: Subcooled Lox/Methane
- **Third Stage**: None
- **Fairing size**: NO FAIRING – clamshell: *9 meters diameter*, 1000 m³ cargo area
- **Payload to LEO**: 100 MT (reusable)
- **Payload to Lunar Surface**: 100 MT (reusable) – with refueling in orbit
- **First flight**: 2020 Starship orbital test flight; 2021 first commercial flight; 2023 fly around Moon
- **Reusability**: 100%
- **Current Status**: Starhopper testing completed; Starship Mk1/Mk2 nearing completion; sub-orbital testing is a few months away
- **Planned payloads**: Replace F9/FH; everything; everywhere, but lots of Starlink
What is Starlink Anyway?
Why is SS/SH a Big Deal?

- First ever fully reusable space vehicle.
- Sub-cooled methane/lox engines, which has never been done before in a flying vehicle.
- Full-flow staged combustion engine, which has never been done before in a flying vehicle.
- As a system, SS/SH will use in-space refueling to launch unprecedented amounts of cargo to deep space.
- The control surfaces of SS have never been used before in a space vehicle.
- The stainless-steel construction of SS/SH promises a revolution in low-cost rocket production.
- The anticipated cost to orbit for SS/SH will slash all previous records, enabling a vast array of new space activities.
- With a 9-meter diameter cargo section, SS/SH can launch a larger cargo than any previous space vehicle.
- A single SS in orbit has a comparable interior pressurized volume to the ISS.
- SS/SH is being developed almost entirely using private funds.
- SS/SH is being developed with an exceptional degree of transparency to the public, with construction literally proceeding in an open field.
LUNAR SURFACE MISSIONS

SHIP LANDS ON MOON WITH SUFFICIENT PROPELLANT TO RETURN DIRECTLY TO EARTH

ELLIPTI C ORBIT PROP TRANSFER

TRANS-LUNAR INJECTION
A Thought Experiment

• Some dismiss Starship/Superheavy as being too risky to be successful
• Suppose the key innovative technologies fail:
 – The Starship heat shield doesn’t work, and so it can’t be re-used
 – In-Space re-fueling doesn’t work
• Starship/Superheavy will still be extremely competitive with New Glenn, the only real threat to F9/FH
• If in-space re-fueling does work, an expendable version of Starship can put 100MT on Mars or the Moon
 – Nothing else comes close to being able to do this
Conclusion: It’s Exciting!!!

- Russians are on a path to not being serious players
- Chinese are the tortoise to the hare, and in the real world the hare wins
- **Newsflash**: BFR/Starship-Superheavy has moved from never-never land to the visible horizon
- Ariane 6, New Glenn, and Vulcan targeted F9/FH
 - They will end up competing with Starship/Superheavy
 - Arianespace/Blue Origin/ULA need to re-think their strategy
- Musk is going “all in” with Starship/Superheavy
 - He will win everything or lose it all
 - If Starship/Superheavy flies, it is hard to imagine SLS making it to Block 2
- Regardless of who wins out exactly, there is every prospect that these exciting choices will enable a new age of lunar exploration and development
After 9 m Starship/Superheavy: 18 m
Questions?