Satellite Power System (SPS) Program Summary

Program Summary
Published December 1978

U.S. Department of Energy
Assistant Secretary for Energy Research
Satellite Power System Project Office
Washington, D.C. 20545

NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>11</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>SATELLITE POWER SYSTEM PROGRAM</td>
<td>6</td>
</tr>
<tr>
<td>FISCAL YEAR 1978 and 1977 SUMMARY TABLES</td>
<td>11</td>
</tr>
<tr>
<td>SYSTEMS DEFINITION STUDIES</td>
<td>23</td>
</tr>
<tr>
<td>ENVIRONMENTAL ASSESSMENT STUDIES</td>
<td>40</td>
</tr>
<tr>
<td>SOCIETAL ASSESSMENT STUDIES</td>
<td>81</td>
</tr>
<tr>
<td>COMPARATIVE ASSESSMENT STUDIES</td>
<td>98</td>
</tr>
<tr>
<td>SELECTED REPORTS BIBLIOGRAPHY</td>
<td>106</td>
</tr>
<tr>
<td>INDEX OF CONTRACTORS</td>
<td>108</td>
</tr>
</tbody>
</table>

TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 1 - SYSTEM DEFINITION PROJECTS</td>
<td>12</td>
</tr>
<tr>
<td>TABLE 2 - ENVIRONMENTAL ASSESSMENT PROJECTS</td>
<td>14</td>
</tr>
<tr>
<td>TABLE 3 - SOCIETAL ASSESSMENT PROJECTS</td>
<td>19</td>
</tr>
<tr>
<td>TABLE 4 - COMPARATIVE ASSESSMENT PROJECTS</td>
<td>21</td>
</tr>
</tbody>
</table>

ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGURE 1 - Department of Energy Organization Overview</td>
<td>iv</td>
</tr>
<tr>
<td>FIGURE 2 - Major Elements of a Satellite Power System</td>
<td>2</td>
</tr>
<tr>
<td>FIGURE 3 - SPS Project Organization Overview</td>
<td>5</td>
</tr>
</tbody>
</table>
PREFACE

The Office of Energy Research was created by Public Law 95-91, Section 209, (42 U.S.C. 7239), as part of the organization plan for the Department of Energy (DOE), both of which were established concurrently on October 1, 1977. An overview of the current DOE organization is shown in Figure 1.

The Director, Office of Energy Research advises the Secretary on the physical research and energy research and development programs of the Department, utilization of multi-purpose laboratories, education and training for basic and applied research activities, and financial assistance for such research activities. The Director develops, manages and directs the physical research, basic life science, multi-disciplinary, and advance research and technology program. The Director also is chairman of the Research and Development Coordination Council which has been established by the Secretary to eliminate undesirable duplication in the conduct of these activities.

In April 1978, a Satellite Power System Project Office was established in the Office of Energy Research with a full-time Director to manage all activities in this program area. Prior to October 1, 1977, it was part of the Division of Solar Energy. The Director is responsible for the environmental, social, economic, and comparative assessment of the SPS concept and, in cooperation with NASA, is responsible for the hardware systems definition. The director manages the concept development and evaluation program, directs studies on the feasibility of the concept, and funds supporting organizations to the SPS project effort. The director focuses on SPS findings, prepares reports, and provides recommendations to DOE management, particularly with regard to major and national decisions regarding future SPS development.
As part of this latter activity, a Program Summary is issued annually.

It is an overview of the ongoing research and assessment efforts of the preceding fiscal year.
FIGURE 1. DOE Organization Overview.
INTRODUCTION

Although the sun is, in effect, an unlimited source of energy, there are two factors that inhibit extensive development of solar electric energy-generation systems on the earth. First, the sun's energy is diffuse and second, solar energy at the earth's surface is intermittent. The sun shine reaches the earth's surface only part of each 24 hours and is often obscured by clouds. However, baseload electricity (24-hour operation) can be generated in space, where a solar energy collector is illuminated by the sun more than 99 percent of the time, regardless of weather or the day-night cycles of the earth. Such a Satellite Power System (SPS) was first suggested in 1968 by Dr. Peter Glaser, and has been under study by the National Aeronautics and Space Administration (NASA) since 1972, and by the Department of Energy since 1976.

Figure 2 shows how such a system would function. A large collector, 55 square kilometers in area, covered with photovoltaic solar cells converts solar power into electricity. The electricity is continuously converted into microwave power for transmission to large receiving, rectifying antennas (rectennas) on earth. These rectennas in turn reconvert the beamed microwave power into electricity and feed it into a utility grid. Such a satellite might weigh as much as 90 million kg., and deliver 5,000 megawatts of power continuously to its ground receiving station. A system of 60 or more of these satellites in geostationary orbit of 35,888 km. above the earth would provide a significant portion of the
Figure 2

MAJOR ELEMENTS OF A SATELLITE POWER SYSTEM (SPS)
total U.S. electric power requirements.

SPS technological studies, performed by NASA since 1972, have uncovered no insurmountable scientific problems, although basic questions remain relating to the feasibility and cost of the large scale engineering tasks required. For fiscal year 1977 the Office of Management and Budget (OMB) transferred the management responsibility of the SPS project from NASA to the Department of Energy (DOE). In response to the growing interest in the possibility of using space and space technology to provide significant quantities of energy for utilization on earth, the DOE (then ERDA) established a Task Group on SPS to investigate this potential energy system and to make recommendations to DOE's Administration regarding future program options. To support the Task Group's decision-making process, DOE conducted an extensive literature review on SPS and SPS-related studies. At the end of 1976, a literature survey and an SPS Environmental Assessment Plan (SEAP) were published. In the same year, the Task Group recommended a specific program of studies to determine the viability of the SPS concept and to identify any barriers to SPS implementation.

To implement the Task Group's recommendation, DOE developed the SPS Concept Development and Evaluation Program Plan in 1977. Key issues were identified and several specific studies were initiated to resolve some of the key issues. Initial environmental guidelines for SPS Concept Development and Evaluation were defined in 1977, and updated in 1978. A storage and retrieval system was developed for DOE in-house SPS documents.

The SPS Project Office was formed in 1978. It has overall management responsibility for the joint DOE/NASA program. An organization chart is shown in Figure 3. Environmental studies are coordinated by the Assistant
Secretary for the Environment (ASEV); system studies remain the responsibility of NASA; the social and comparative assessments of the SPS are the direct responsibility of the SPS Project Office. In addition to these four major project areas a planning and analysis function has been defined to support the project office. Policy decisions and review of activities is assisted by the Working Group which consists of the leaders of the five defined activities. A special overview role is being negotiated with the National Academy of Sciences.
Figure 3. SPS CONCEPT DEVELOPMENT & EVALUATION PROJECT
ORGANIZATION OVERVIEW
The Satellite Power System Program

OBJECTIVE

The objective of the joint DOE/NASA SPS concept development and evaluation program is to achieve by the end of 1980 an initial understanding of the technical feasibility, economic practicability, and the social and environmental acceptability of the SPS concept so that recommendations concerning program continuation can be made.

PROGRAM STUDY AREAS

In executing its management responsibility, DOE, with the cooperation of NASA, has developed an SPS Concept Development and Evaluation Program Plan. This plan details the various technical and environmental tasks to be completed by 1980. The four major study areas that have been identified and will be undertaken during the SPS program are:

- Systems Definition.
- Environmental Assessment -- Evaluation of Environmental Health and Safety Factors.
- Societal Assessment.

The systems definition is NASA's primary responsibility, while the other areas are DOE's responsibility.

SYSTEMS DEFINITION

NASA will identify and define the most attractive SPS concept(s)
from economic and technical considerations. The results of the systems
definition effort will provide quantitative data from which environmental
and societal implications of the SPS can be drawn and evaluated.

A photovoltaic energy conversion system has been selected as the refer-
ence system. Current studies are listed in Table 1. Future systems study
efforts will refine the definition of the reference system.

ENVIRONMENTAL ASSESSMENT

An energy system has questionable value if its implementation sacrifices
the health, safety, or welfare of the general public. The SPS Concept
Development and Evaluation Program Plan, therefore, includes detailed study
plans to determine if any of the potential environmental, health and safety
effects are so adverse as to discourage development of the SPS system.
Examples of these studies include the evaluation of the following factors:

- Environmental Health and Safety (EH&S)
 - Microwave EH&S effects.
 - Non-microwave EH&S effects.
- Atmospheric effects
 - Launch flight and recovery and space operations effects.
 - Climatological effects including microwave heating.
- Communications effects
 - Microwave effects on electromagnetic systems.
 - Microwave atmospheric interaction and resulting Radio
 Frequency Interference and Electromagnetic Interference
 (RFI/EMI).
 - Non-microwave communications effects.

Key environmental issues have been identified and DOE has initiated a
number of specific studies to resolve some of these issues in FY 78, with
several studies continuing through FY 79. The studies are listed in Table 2. The results of these studies, and future efforts, will lead to a more definitive understanding of the SPS impact on public health and safety, and environmental quality, and will become inputs to the Environmental Assessment (EA) of the SPS concept.

SOCIETAL ASSESSMENT

In addition to its interactions with the physical environment, the SPS may have significant impacts on society, its institutions, and its resources. The DOE has therefore planned studies that will address issues of resource utilization, institutional factors, international issues and the societal effects of SPS. Study tasks (fully listed in Table 3) include evaluation of the following issues:

- Resource Utilization
 - Materials
 - Land use
 - Energy
- Institutional Factors
 - Federal Government involvement
 - Regulatory Impacts (State and Local)
 - Financing and Management
 - Utility Integration
- International Issues
 - International Agreements
 - International Organizations
 - Military Implications
Studies consistent with the Program Plan, were initiated in FY 77 to deal with some aspects of the resources and institutional issues. During FY 78, the SPS Project Office implemented studies in all four areas to survey existing work as it is applicable to the SPS and to define additional efforts required for the societal assessment.

COMPARATIVE ASSESSMENT

Establishment of the technical, environmental and economic feasibility of an SPS energy system does not necessarily imply that it should be built. Before a commitment to SPS can be considered, DOE will complete a comparative assessment of the SPS and other advanced energy systems to determine if the implementation of the SPS would offer a distinct advantage to the American people. Other energy systems to be considered in this comparative evaluation include fossil fuel, nuclear, and solar energy systems such as terrestrial, Ocean Thermal Energy Conversion (OTEC), wind energy and biomass.

In 1976, the SPS Task Group identified comparative assessment as one of the important SPS program elements. The 1977 program Plan has placed a similar importance on this element. Work has been initiated to develop a comparative assessment methodology so that the different energy systems can be compared on a common basis. A comparative data base will be developed from which the assessments will be made. The comparative assessment effort
will consider the environmental, societal, economic and technical issues treated in the tasks above. Comparative Assessment Program Tasks started in FY 1978 are listed in Table 4.
Fiscal Year 1978 Summary Tables

A listing of the projects sponsored by the Department of Energy are presented in Tables 1 through 4.
<table>
<thead>
<tr>
<th>Organization</th>
<th>Title</th>
<th>Projected Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marshall Space Flight Center</td>
<td>Concept Definition</td>
<td>Refine and update SPS design concept, evolve viable systems and subsystems.</td>
</tr>
<tr>
<td>Marshall Space Flight Center</td>
<td>Cost Model Development</td>
<td>Provide accurate and reliable estimates of the costs of certain SPS elements.</td>
</tr>
<tr>
<td>Marshall Space Flight Center</td>
<td>Comparative Analysis of Metal and Composite Materials for SPS Related Large Space Structures</td>
<td>Identify relative benefits and risks associated with use of composite and metallic materials for space structures.</td>
</tr>
<tr>
<td>Marshall Space Flight Center</td>
<td>Electrostatic Protection of the Solar Power Satellite and the Rectenna</td>
<td>Investigate potential hazard to SPS from "spacecraft charging" and hazard to rectenna due to lightning.</td>
</tr>
<tr>
<td>Marshall Space Flight Center</td>
<td>Accuracy Analysis of a Pointing Control System of the Satellite Power System</td>
<td>Analyze mechanisms by which SPS mechanical and electronic control subsystems affect power beam pointing accuracy and stability.</td>
</tr>
<tr>
<td>Johnson Space Center</td>
<td>Critique, Modify, Maintain Baseline System</td>
<td>Critique all parts of the baseline system, modify and integrate latest support studies into the system.</td>
</tr>
<tr>
<td>Johnson Space Center</td>
<td>Refine Space Construction and Maintenance Approach Construction Facilities</td>
<td>Analyze and refine construction, fabrication, assembly and related activities which occur in LEO and GEO orbit locations and at the rectenna site.</td>
</tr>
</tbody>
</table>
Table 1 continued

<table>
<thead>
<tr>
<th>Organization</th>
<th>Title</th>
<th>Projected Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johnson Space</td>
<td>Define Industrial and Earth Transportation Complex</td>
<td>Define industrial and earth-based transportation requirements imposed on the U.S., identify expansion in production capability and creation of new industry to support SPS.</td>
</tr>
<tr>
<td>Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnson Space</td>
<td>Conduct Launch Site Location Analysis and Complex Definition</td>
<td>Define potential launch complex and funding requirements for facilities, equipment and staff for increased launch activity of a commercial scale SPS.</td>
</tr>
<tr>
<td>Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnson Space</td>
<td>Define and Analyze Operation Activity from Manufacturing Through</td>
<td>Define the flow and flow rates of raw materials, components, subassemblies and assemblies from source to launch site to the construction site, analyze system operations, and identify options.</td>
</tr>
<tr>
<td>Center</td>
<td>Space Construction.</td>
<td></td>
</tr>
<tr>
<td>Johnson Space</td>
<td>Analyze Integration of SPS with Ground Networks</td>
<td>Conduct rectenna siting analysis and create data base for construction of a rectenna in various locations.</td>
</tr>
<tr>
<td>Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnson Space</td>
<td>Prepare Technology Advancement, Development, and Facility Requirements and Plans</td>
<td>Develop a conceptual plan outlining technology activities including preliminary schedules and costing plans for implementation of an SPS program.</td>
</tr>
<tr>
<td>Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnson Space</td>
<td>Cost Analysis and Schedule Analysis</td>
<td>Perform a total cost analysis including updating and integrating identifiable and accessible elements, cost flow requirements with time, and decision milestones.</td>
</tr>
<tr>
<td>Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnson Space</td>
<td>SPS Phase Control System Definition</td>
<td>Conduct simulation analysis and tradeoff/optimization studies of the baseline phase control system.</td>
</tr>
<tr>
<td>Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnson Space</td>
<td>Analysis of S-Band Solid State Transmitter for SPS</td>
<td>Analyze and develop design requirements of an S-Band solid state transmitter to be incorporated into the system definition study.</td>
</tr>
<tr>
<td>Center</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2
FY 78 Summary Tables
Program Element

<table>
<thead>
<tr>
<th>Organization</th>
<th>Title</th>
<th>Projected Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argonne National Laboratory</td>
<td>Planning and Analysis Management Support</td>
<td>Performs planning and analysis functions and provides management support to the Director, SPSPO.</td>
</tr>
<tr>
<td>Argonne National Laboratory</td>
<td>Assessment of SPS Microwave Radiation on the Rectenna Site Ecology</td>
<td>Identified ecological issues of microwave reception.</td>
</tr>
<tr>
<td>Argonne National Laboratory</td>
<td>Assessment of SPS Rectenna Construction and Operation Impact upon the Rectenna Site Ecology</td>
<td>Identifies rectenna construction and operation impacts to the environment and identifies research needs.</td>
</tr>
<tr>
<td>Argonne National Laboratory</td>
<td>Qualitative Assessment of Inadvertent Weather Effects of SPS Rocket Launches in Troposphere</td>
<td>Asses weather effects due to rocket launches in the troposphere.</td>
</tr>
<tr>
<td>Argonne National Laboratory</td>
<td>Preliminary Assessment of Effects of Rocket Effluents in Stratosphere</td>
<td>Identifies possible stratospheric effects of rocket exhaust emissions, and identifies further research priorities.</td>
</tr>
<tr>
<td>Argonne National Laboratory</td>
<td>Quality Assurance of Microwave Health and Safety Research</td>
<td>Develops data quality assurance for microwave Health and Safety research program.</td>
</tr>
<tr>
<td>Argonne National Laboratory</td>
<td>Dependency of Microwave Biological Effects on Field Intensity</td>
<td>Provides a methodology for correlating different microwave exposure conditions with biologic effects.</td>
</tr>
<tr>
<td>Argonne National Laboratory</td>
<td>Response of Airborne Biota to Microwave Transmission</td>
<td>Determines any detrimental microwave effects on avian species flying through the beam.</td>
</tr>
<tr>
<td>Organization</td>
<td>Title</td>
<td>Projected Contribution</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Argonne National Laboratory</td>
<td>Teratogenetic Effects of Microwave Power Transmission</td>
<td>Determines teratogenetic and/or embryopathic effects of microwave radiation on mice.</td>
</tr>
<tr>
<td>Argonne National Laboratory</td>
<td>Effects of Microwave Power Transmission on the Nervous System</td>
<td>Assesses the effects of SPS microwaves on the nervous system.</td>
</tr>
<tr>
<td>Argonne National Laboratory</td>
<td>Immunological/Hematological Effects of Microwave Beam Transmission</td>
<td>Confirms results of existing immune effects studies.</td>
</tr>
<tr>
<td>Argonne National Laboratory</td>
<td>Perturbations in Behavior Resulting from the Interaction of Drugs with SPS Microwave Radiation</td>
<td>Determines drug-microwaves synergism used in assessing health impact of SPS and the threshold of drug-radiation interaction.</td>
</tr>
<tr>
<td>Argonne National Laboratory, Boston University</td>
<td>Preliminary Identification of Effects of Rocket Effluents in Upper Atmosphere, of Research Needs, and Preliminary Assessment of Impacts</td>
<td>Identifies current state of knowledge and assesses rocket effluent impacts on the atmosphere.</td>
</tr>
<tr>
<td>Argonne National Laboratory, South Dakota School of Mines and Technology</td>
<td>Preliminary Identification of Possible Issues and Impacts of Rectenna Operations</td>
<td>Assesses potential atmospheric effects of rectenna operations and the impacts on climate and weather.</td>
</tr>
<tr>
<td>Department of Commerce/ITS</td>
<td>SPS Microwave Radiation Effects on Ionosphere, Magnetosphere, and Local Field Intensity, Program Management Distributions</td>
<td>Provides management support for all DOE studies on SPS Microwave Radiation effects.</td>
</tr>
<tr>
<td>Department of Commerce/ITS</td>
<td>SPS Electromagnetic Compatibility Assessment, Overview Committee</td>
<td>Develops plan to analyze effects of SPS heating of the ionosphere and magnetosphere in communication systems.</td>
</tr>
<tr>
<td>Organization</td>
<td>Title</td>
<td>Projected Contribution</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Department of Commerce/ITS</td>
<td>SPS Microwave Radiation, Energy Storage in Vehicles and Habitable Structures</td>
<td>Identifies energy storage in habitable structures and vehicles, for health and safety assessment, estimates effects on electromagnetically sensitive systems.</td>
</tr>
<tr>
<td>Department of Commerce/ITS</td>
<td>SPS Electromagnetic Interference (EMI) Effects</td>
<td>Predicts SPS-microwave effects on electromagnetic systems.</td>
</tr>
<tr>
<td>Department of Commerce/ITS</td>
<td>SPS Radiofrequency Interference (RFI) Effects</td>
<td>Predicts and assesses RFI effects.</td>
</tr>
<tr>
<td>Department of Commerce/ITS, NOAA</td>
<td>SPS Microwave Radiation Interactive Effects on Magnetosphere and Ionosphere</td>
<td>Predicts synergistic effects of SPS Microwave and vehicular emissions on EM scattering properties of the magnetosphere and ionosphere.</td>
</tr>
<tr>
<td>Department of Commerce/ITS</td>
<td>SPS Geographic Distribution of Field Intensities</td>
<td>Identifies geographic power distribution and provides data to determine field strengths.</td>
</tr>
<tr>
<td>Environmental Protection Agency</td>
<td>Microwave Exposure Chambers for Assessment of Public Health Impacts</td>
<td>Develops increased capacity to study effects of exposure to microwave radiation.</td>
</tr>
<tr>
<td>Environmental Protection Agency</td>
<td>SPS Microwave Impacts on Public Health and Safety Overview Committee</td>
<td>Establishes research programs to develop understanding of microwave impact on environmental assessment.</td>
</tr>
<tr>
<td>Environmental Protection Agency</td>
<td>SPS Microwave Impacts on Public Health and Safety Program Coordination and Guidance</td>
<td>Coordinates and guides studies of microwave biological effects.</td>
</tr>
<tr>
<td>Lawrence Berkeley Laboratory</td>
<td>SPS Non-Microwave Impacts on Space Worker Health and Safety Program Guidance</td>
<td>Provides data on non-microwave impacts on space worker health and safety for preliminary environmental impact assessment.</td>
</tr>
<tr>
<td>Lawrence Berkeley Laboratory</td>
<td>SPS Non-Microwave Impacts on Health and Safety</td>
<td>Characterizes space environment and identifies probable effects on health.</td>
</tr>
<tr>
<td>Organization</td>
<td>Title</td>
<td>Projected Contribution</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Los Alamos Scientific Laboratory</td>
<td>Reduction of LAGOPEDO Data</td>
<td>Identifies information from LAGOPEDO experiments re: effects of (multiple launch) rocket effluents in the upper atmosphere.</td>
</tr>
<tr>
<td>Los Alamos Scientific Laboratory</td>
<td>SPS Microwave Radiation Effects on the Ionosphere</td>
<td>Verifies predicted RF power density threshold for thermal runaway.</td>
</tr>
<tr>
<td>Los Alamos Scientific Laboratory</td>
<td>Effects of Propellant Emissions in the Upper Atmosphere</td>
<td>Evaluates long-range effects on the ionosphere and on climate and terrestrial communications.</td>
</tr>
<tr>
<td>Rice University Department of Commerce/ITS</td>
<td>SPS Magnetospheric and Ionospheric Heating Facility</td>
<td>Provides design of an ionospheric heating facility and experiments to assess EMC of SPS.</td>
</tr>
<tr>
<td>University of California, Davis</td>
<td>Study of the Biological and Ecological Effects of the Satellite Power System (SPS) Microwave Power Transmission System on Behavior of Insects and other Terrestrial Invertebrates</td>
<td>Assesses microwave radiation effects on the honey bee, and extrapolate to other species.</td>
</tr>
<tr>
<td>Battelle Memorial Institute</td>
<td>SPS RFI/EMI Interference</td>
<td>Task coordination and guidance.</td>
</tr>
</tbody>
</table>
Table 2A

FY 1977 Summary Tables
Program Element
(Studies Continuing Through FY 78)

ENVIRONMENTAL ASSESSMENT

<table>
<thead>
<tr>
<th>Organization</th>
<th>Title</th>
<th>Projected Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argonne National Laboratory</td>
<td>SPS Preliminary Environmental Assessment</td>
<td>Completes preliminary EA against guidelines that have been promulgated.</td>
</tr>
<tr>
<td>Argonne National Laboratory</td>
<td>SPS Management Analysis and Control</td>
<td>Develops quantitative control techniques to aid management.</td>
</tr>
<tr>
<td>Argonne National Laboratory</td>
<td>SPS Guidelines and Criteria</td>
<td>Supports review and development of guidelines for SPS concept development and evaluation.</td>
</tr>
<tr>
<td>Battelle Memorial Institute-Pacific</td>
<td>SPS Microwave Radiation Effects</td>
<td>Estimates the effects of microwave radiation on health and ecosystems.</td>
</tr>
<tr>
<td>Northwest Lab.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los Alamos Scientific Laboratory</td>
<td>SPS Atmospheric Effects of Microwaves</td>
<td>Investigates the effects of SPS microwave radiation on atmosphere (ionosphere, magnetosphere).</td>
</tr>
<tr>
<td>Organization</td>
<td>Title</td>
<td>Projected Contributions</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Planning Research Corporation</td>
<td>SPS Societal Assessment Program Coordination and Guidance</td>
<td>Provides management support on the SPS Societal Impact Assessment Program.</td>
</tr>
<tr>
<td>Economic Consultants</td>
<td>Resources</td>
<td>Define state of knowledge in SPS impact on national and world resources.</td>
</tr>
<tr>
<td>Rice University</td>
<td>Land Use</td>
<td>Provide preliminary assessment of SPS land use requirements and identifies potential sites based on exclusion and inclusion criteria for further analysis.</td>
</tr>
<tr>
<td>International Technical Services</td>
<td>Federal Involvement</td>
<td>Identifies the government bodies in SPS development and operation.</td>
</tr>
<tr>
<td>Economic Consultants</td>
<td>Impact of a Satellite Power System (SPS) on State and Local Regulations</td>
<td>Identifies probable state and local governmental regulation that would impact SPS development.</td>
</tr>
<tr>
<td>University of Mississippi and Carl Q. Christol</td>
<td>International Agreements</td>
<td>Determines international agreements including orbital assessment, frequency allocations, and microwave standards, that would be required for SPS implementation.</td>
</tr>
<tr>
<td>Science Applications Incorporated and Herbert E. Kierulff, Jr.</td>
<td>Financial Management</td>
<td>Assesses alternative financial management scenarios to develop and operate the SPS.</td>
</tr>
<tr>
<td>International Technical Services</td>
<td>International Organizations</td>
<td>Evaluates the advantages of developing an international organization to manage and finance the SPS.</td>
</tr>
<tr>
<td>PRC Energy Analysis Co. and Michael J. Ozeroff</td>
<td>Military Implications</td>
<td>Addresses SPS vulnerability issues and military implications.</td>
</tr>
<tr>
<td>Organization</td>
<td>Title</td>
<td>Projected Contribution</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Argonne National Laboratory</td>
<td>Relocation Industrial and Population</td>
<td>Identify potential industrial and population relocation to the SPS power source.</td>
</tr>
<tr>
<td>Center for Policy Process</td>
<td>Centralization of Electric Power</td>
<td>Assesses historical trends and potential SPS-caused societal centralization.</td>
</tr>
<tr>
<td>Environmental Resource Group</td>
<td>Public Acceptance</td>
<td>Identifies public acceptability determinants, and public interest groups that will play a role in SPS public acceptance.</td>
</tr>
<tr>
<td>Forum for the Advancement of Students in Science and Technology</td>
<td>Student Involvement in SPS</td>
<td>Involves the college student community in SPS project planning.</td>
</tr>
</tbody>
</table>
Table 4

FY 78 Summary Tables
Program Element

COMPARATIVE ASSESSMENT

<table>
<thead>
<tr>
<th>Organization</th>
<th>Title</th>
<th>Projected Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argonne National</td>
<td>Comparative Assessment</td>
<td>Develops methodologies for comparing SPS to alternative energy systems.</td>
</tr>
<tr>
<td>Laboratory</td>
<td>Methodology</td>
<td></td>
</tr>
<tr>
<td>Argonne National</td>
<td>Comparative Data Base</td>
<td>Develops comparative data on key environmental and social issues from which assessments may be made.</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argonne National</td>
<td>Terrestrial Alternatives</td>
<td>Develops data on alternative energy systems for use in the comparative assessments.</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argonne National</td>
<td>Comparative Assessments</td>
<td>Provides a comparative overview on the SPS versus alternative energy supply systems, and enables DOE to make a decision regarding SPS program development at an early date.</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argonne National</td>
<td>Utility Integration</td>
<td>Provides a review of utility systems that could employ SPS power and determines the problems of SPS integration into the utility systems</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4b

FY 1977 Summary Tables

Program Element

(Studies Continuing Through FY 1978)

COMPARATIVE ASSESSMENT

<table>
<thead>
<tr>
<th>Organization</th>
<th>Title</th>
<th>Projected Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argonne National</td>
<td>SPS Comparative Assessment</td>
<td>Develops methodology for comparing SPS to alternative energy systems.</td>
</tr>
<tr>
<td>Laboratory</td>
<td>Assessment</td>
<td></td>
</tr>
<tr>
<td>Sept. 77 - May 78</td>
<td>Methodology</td>
<td></td>
</tr>
</tbody>
</table>

22
SYSTEM DEFINITION STUDIES
FY 1978
TITLE
Concept Definition Studies

ORGANIZATION
Marshall Space Flight Center
Marshall Space Flight Center AL 35812

AMOUNT
FY 78 $550,000
FY 79 $450,000 (Est.)
FY 80 $300,000 (Est.)

PRINCIPAL INVESTIGATOR
C. Guttman

WORK LOCATION
Rockwell International Corp., Downey, CA

DURATION-AWARD DATA
12 months - 3.1.78

CONTRACT NO.
NAS 8-32475

PROJECT SUMMARY

Objective
Continued definition of SPS System Concept(s), and development of viable system/subsystem design concepts.

Approach
1. Conduct special emphasis studies in the following areas:
 . SPS transport through the Space Environment.
 . Terrestrial and Space Operations and logistics.
 . SPS System Concept(s) Operations Analysis.

2. Perform in depth investigation of solid state microwave power transmission.

3. Perform space transportation analyses and develop preferred concepts and data to support the SPS design concept.

4. Conduct studies to determine SPS hardware, technology components, and specific tests that could be incorporated in an SPS technology verification, and experimental demonstration program.

5. Perform systems engineering and integration analysis.

6. General cost and program data based on new technical analysis, and systems integration data.

Benefit
Provide DOE and NASA with sufficient data and information to select a preferred viable SPS Concept(s) by FY 1980.
Objective
Develop cost accurate estimates of certain SPS cost elements.

Approach
1. Develop Cost Estimating Relationships (CER's) for the MSFC SPS cost model. The CER's will include:
 - The conventional system/subsystem approach, and others.
 - The Red Star database, and additional data collected from other sources.

2. Analyze selected data for each program/project application to ensure that the data used are the best available predictors of the expected costs of the intended application.

3. Stratify data within a CER to reflect varying degrees of hardware complexity.

Benefit
Provides reliable cost estimates of certain SPS cost elements.
TITLE
Comparative Analysis of Metallic and Composite Materials for SPS Related Large Space Structures

ORGANIZATION
Marshall Space Flight Center, AL 35812

AMOUNT
FY 78 $20,000

PRINCIPAL INVESTIGATOR
S. Denton

WORK LOCATION
Vought Corporation
Dallas, TX

DURATION-AWARD DATA
4 months - 5/1/78

CONTRACT NO.
NAS 8-33062

PROJECT SUMMARY

Objective:
Perform an independent comparative analysis and evaluation of metallic and composite materials, designs, and fabrication techniques for SPS related large space structures.

Approach:
1. Evaluate available data from previous SPS NASA and contractor efforts to identify typical material, design and fabrication concept approaches.
2. Identify the factors and methodologies employed to assess relative benefits and potential problems.

Benefit:
Independent evaluating of the relative benefits and risks of composite and metallic materials for SPS large space structures.
TITLE
Economic Factors Relating to the Development and Implementation of the Satellite Power System

<table>
<thead>
<tr>
<th>AMOUNT</th>
<th>PRINCIPAL INVESTIGATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY 78 $95,000</td>
<td>M. Page</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ORGANIZATION</th>
<th>WORK LOCATION</th>
<th>DURATION-AWARD DATA</th>
<th>CONTRACT NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marshall Space Flight Center</td>
<td>ECON, Inc.</td>
<td>8 months - 4.1.78</td>
<td>NAS 8-33002</td>
</tr>
<tr>
<td>Marshall Space Flight Center, AL</td>
<td>Princeton, N.J.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROJECT SUMMARY

Objective

Investigate the effects that economic factors have on SPS Concept(s) selection.

Approach

1. Utilize the available methodologies and computer software previously developed.
2. Investigate the consideration of economic factors in the SPS System studies that relate to the selection of the SPS satellite configuration.
3. Perform an analysis to determine the proper rate of interest to use in SPS systems definition studies.
4. Investigate the impacts of differential inflation on SPS system definition casting procedures.
5. Investigate the impact of energy system evaluation methodologies on SPS system definition studies.
6. Investigate utility interface issues that could result on SPS system design impacts.

Benefit

Provides an overview as to the relationship between various economic evaluation methodologies and their impacts on SPS concept selection.
Investigate the potential hazard that electrostatic charging presents to the satellite and the rectenna, and determine the implications on the reference SPS design.

Approach

1. Investigate the rectenna lightning hazard including:
 - The nature and distribution of natural lightning.
 - The reference rectenna design.
 - The effectiveness of compatible lightning protection devices.

2. Investigate satellite electrostatic space charging hazard including:
 - Areas on the satellite likely to receive high voltages and vulnerable to resulting arcs or breakdowns.
 - The magnitude of the hazard in each area.
 - Specific design changes to eliminate or reduce the hazard.

Benefit

Reduces potential hazard from electrostatic charges to the satellite and rectenna.
Title: Accuracy Analysis of a Pointing Control System of a Satellite Power System

Organization: Marshall Space Flight Center, AL 35812

Amount: FY 78 $10,000

Principal Investigator: J. Howell

Work Location: University of Tennessee, Knoxville, TN

Duration-Award Data: 6 months - 7/1/78

Contract No.: NAS 8-33065

Project Summary

Objective:
Determine overall pointing accuracy, the resolution required for pilot beam sensors, and define control system requirements and constraints.

Approach:
1. Analyze the microwave beam pointing control subsystem and design a control command scheme with the command signal generated form (1) a single reference subarray at the center of the antenna and from (2) a multiple subarray distributed throughout the antenna.

2. Investigate and determine the microwave beam pointing accuracy and the effects of the following on accuracy:
 - Mechanical gimbal accuracy.
 - Resolution and sensitivity of pilot beam sensors.
 - Phased array pointing accuracy.
 - Structure alignment.
 - Dynamic structural bending and frequency.
 - Distortions in pilot and power beams.

3. Develop a set of control subsystem requirements and design constraints.

Benefit:
Systems affecting SPS microwave beam pointing accuracy and stability will be analyzed and a pointing control system will be designed.
PROJECT SUMMARY

Objective:

Critique of and further investigations of the SPS baseline system concept including rationale and prioritization, to provide sufficient data inputs for the NASA/DOE preferred concept selection in April 1979 and final concept in October 1979.

Approach:

1. Subcontractors to perform an independent critique of the preliminary baseline system concept.

2. Typical activities of further investigation include: Investigation of smaller antennas (2½ - 3 GW range), solid state microwave generators, and definition of failure modes, rates and effects analysis. Analysis of the microwave beam and phase error buildup will be conducted to the tube level, and phase control support studies integrated into the SPS design.

3. This activity will be essentially completed during first 6 months of the study (Phase I).

Benefit:

Provides a critique of the SPS baseline concept and identifies those design features requiring further analysis. Develops a rationale for any proposed effort intended to result in a major system element design change. Critically analyzes SPS system elements including the criteria of reduced cost and/or weight and the reduction of risk and technology advancement.
TITLE
Refine Space Construction and Maintenance Approach Construction Facilities

ORGANIZATION
Johnson Space Center
Houston, TX 77058

<table>
<thead>
<tr>
<th>AMOUNT</th>
<th>PRINCIPAL INVESTIGATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY 78 $150,000</td>
<td>Harold E. Benson</td>
</tr>
<tr>
<td>FY 79 $65,000 (Est.)</td>
<td></td>
</tr>
<tr>
<td>FY 80 TBD</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WORK LOCATION</th>
<th>DURATION - AWARD DATA</th>
<th>CONTRACT NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boeing Aerospace Company</td>
<td>16 months - 6/19/78</td>
<td>NAS 9-15636</td>
</tr>
<tr>
<td>Seattle, Washington</td>
<td></td>
<td>Task II</td>
</tr>
</tbody>
</table>

PROJECT SUMMARY

Objective:
To iterate and optimize construction and maintenance approach and investigate the possibility of reducing the size and complexity of the construction base and operations with a subsequent reduction in construction costs.

Approach:

1. **Satellite Construction**
 - Critique baseline concept and analyze other innovative concepts
 - Analyze alternative concepts.

2. **Rectenna Construction**
 - Analyze construction of rectenna from three design standpoints:
 - Automated construction equipment and techniques.
 - Cost impact of innovative structural modifications.
 - Structural analysis for alternative electronic approaches.

Benefit:
Identifies an alternative construction concept. Provides the design analysis of the construction base. Develops an approach for automated construction of rectenna, the maintenance requirements for the satellite and rectenna, and the space maintenance requirements for construction and transportation systems.
TITLE
Define Industrial and Earth Transportation Complex

ORGANIZATION
Johnson Space Center
Houston, TX 77058

AMOUNT
FY 78 $18,000
FY 79 $36,000 (Est.)
FY 80 TBD

PRINCIPAL INVESTIGATOR
Harold E. Benson

WORK LOCATION
Boeing Aerospace Company
Seattle, Washington

DURATION-AWARD DATA
16 months - 6/19/78

CONTRACT NO.
NAS 9-15636
Task III

PROJECT SUMMARY

Objective:
To define the industrial and earth-based transportation requirements imposed on the United States.

Approach:
1. Select areas of production capacity issues.
2. Review and select candidate solar cell process.
3. Provide inputs for launch vehicle, structural and propellant manufacturer.
4. Update, review and analyze production flow concept.
5. Identify potential transportation problems.

Benefit:
Identifies new production capacity requirements, size and type of major factories, equipment, personnel and resources, potential transportation problems, facility costs and personnel, and packaging concepts.
TITLE
Conduct Launch Site Location Analysis and Complex Definition

ORGANIZATION
Johnson Space Center
Houston, TX 77058

AMOUNT
FY 78 $23,000
FY 79 $57,000 (Est.)
FY 80 TBD

PRINCIPAL INVESTIGATOR
Harold E. Benson

WORK LOCATION DURATION-AWARD DATA CONTRACT NO.
Boeing Aerospace Company Seattle, Washington 16 months - 6/19/78 NAS 9-15636 Task IV

PROJECT SUMMARY
Objective:
To define the potential launch complex for increased launch activity and the funding requirements for the facilities, equipment and staff to support the required traffic.

Approach:
1. Collate compatible launch vehicle and site options.
2. Conduct trade studies between space transportation rates, possible environmental impacts versus ground logistics and other impacts.
3. Analyze off-shore and on-shore launch and recovery sites for various vehicles and relative costs and problems of several approaches.

Benefit:
Provides parametric data of launch site options. Recommends preferred launch site latitude. Identifies emissions from a trajectory analysis. Defines the launch complex, personnel and funding requirements.
PROJECT SUMMARY

Objective:
To define the flow and flow rates of raw materials, components, sub-assemblies and assemblies from source to launch site to the construction site.

Approach:
1. Develop payload packaging concepts.
2. Analyze program elements for options of system operations (i.e., control of flights from central mission control, a LEO construction, a GEO construction base, or some other alternative).
3. Define physical interfaces between program elements and manpower and computational requirements for each of the control centers.
4. Summarize all operations defined in other sections of the study.

Benefit:
Provides a description of the concise end-to-end operations as well as the continuity of launch and recovery site operations. Integrates the space logistics and defines the ground flow, LEO transportation and rectenna hardware.
TITLE
Analyze Integration of SPS with Ground Networks

AMOUNT
FY 78 $14,000
FY 79 $93,000 (Est.)
FY 80, TBD

ORGANIZATION
Houston Space Center
Houston, TX 77058

WORK LOCATION
Boeing Aerospace Company
Seattle, Washington

DURATION-AWARD DATA
16 months - 6/19/78

PRINCIPAL INVESTIGATOR
Harold E. Benson

CONTRACT NO.
NAS 9-15636

Task VI

PROJECT SUMMARY

Objective:
To achieve data base of requirements and considerations involved in constructing a rectenna in any location.

Approach:
1. Prepare information package and solicit utility inputs.
2. Estimate environmental (latitude) variables.
3. Define land requirements.
4. Develop site selection criteria.
5. Perform rectenna-grid interconnects and operating systems analysis.
6. Analyze SPS-grid operations.

Benefit:
Provides a data base for the requirements and alternatives before reaching a decision involved in constructing a rectenna in any location with emphasis on 'sensitivities associated with the total range of variables inherent in a wide range of geographical locations and classes of terrain. Develops a design criteria for various elements of the rectenna, established in order to relate to cost of construction in any location. Assesses utility grid connections and operations.
TITLE
Prepare Technology Advancement, Development, and Facility Requirements and Plans

ORGANIZATION
Johnson Space Center
Houston, TX 77058

AMOUNT
FY 78 $35,000
FY 79 $60,000 (Est.)
FY 80 TBD

PRINCIPAL INVESTIGATOR
Harold E. Benson

WORK LOCATION DURATION-AWARD DATE CONTRACT NO.
Boeing Aerospace Company Seattle, Washington 16 months - 6/19/78 NAS 9-15636

PROJECT SUMMARY

Objective:
To develop a conceptual plan outlining the technology activities required for implementation of an SPS program.

Approach:
1. Update, circulate for comments, and revise technology advancements requirements.

2. Develop initial estimate of ground-based program.

3. Develop initial estimate of shuttle flight experiments.

4. Analyze flight project and initial commercial SPS options.

5. Input technology advancement and development requirements for space construction, rectenna and avionics.

6. Develop initial overall development approach.

Benefit:
Advances technology and develops a schedule and cost plan for laboratory and earth-based development and testing, shuttle flight experiment and equipment, flight projects, SPS commercial development, and facility development requirements.
TITLE
Cost Analysis and Schedule Analysis

ORGANIZATION
Johnson Space Center
Houston, TX 77058

AMOUNT
FY 78 $ 6,000
FY 79 $55,000 (Est.)
FY 80 TBD

PRINCIPAL INVESTIGATOR
Harold E. Benson

WORK LOCATION
Boeing Aerospace Company
Seattle, Washington

DURATION-AWARD DATA
16 months - 6/19/78

CONTRACT NO.
NAS 9-15636
Task VIII

PROJECT SUMMARY

Objective:
To provide an updated system cost estimate to reflect system changes and support the system definition document update.

Approach:

1. Update work breakdown structure.
2. Update costs for space construction.
3. Estimate costs for avionics.
4. Integrate and update baseline costs.
5. Update launch site costs.
6. Automate schedule analyses and development costs.

Benefit:
Incorporates SPS costs in WBS format. Develops an SPS program plan with options, examines the program critical path, and assesses cost/risks to provide for key decision points.
TITLE
Support Studies: SPS Phase Control
Definition

ORGANIZATION
Johnson Space Center
Houston, TX 77058

AMOUNT
FY 78 $ 70,000
FY 79 $125,000 (Est.)
FY 80 TBD

PRINCIPAL INVESTIGATOR
J. W. Seyl

WORK LOCATION
LinCom Corporation
Pasadena, CA

DURATION-AWARD DATA
8 months - 3/31/78

CONTRACT NO.
NAS 9-15237

PROJECT SUMMARY
Objective:
To provide further definition for the baseline phase control system design.

Approach:
1. Continue development of pilot signaling techniques to alleviate beam squint.
2. Define reference phase distribution system to sufficient level for investigation of:
 o Power up algorithm and system stability.
 o Survivability - graceful degradation.
 o System configuration.
3. Quantify media and mechanical alignment accuracy effects.
4. Define power amplifier phase control requirements.
5. Modeling of overall SPS MW system power transmission efficiency.
6. Analysis and modeling of power transponder performance characteristics.
7. Pilot signal detailed analysis.
8. Ground-based safety (monitoring) system conceptual design.
9. Provide values of SPS transmission efficiency loss contributors.

Benefit:
Develops the design of the baseline system required for computer simulation. Simulates through analysis the baseline phase control system. Provides a tradeoff/optimization study of the baseline phase control system. Performs a final system sensitivity analysis.
PROJECT SUMMARY

Objective:

Determine the applicability of solid-state technology to the SPS microwave transmitter by conducting studies emphasizing fundamental tradeoffs and concepts and establish technical feasibility of utilizing solid-state amplifiers such as current allium arsenide devices.

Approach:

1. Conduct concept and feasibility investigations, tradeoff studies.

2. Analyze a minimum of two alternative approaches or concepts for the field effect transistors (FET).

3. Perform analysis by assuming a single-stage distributed circuit FET amplifier demonstrating a minimum of 1.4 W of output RF power at 80% efficiency and a module gain of 30 dB.

4. Perform study by assuming a gallium-arsenide lumped-element amplifier with power added efficiency of 80%.

Benefit:

Provides a summary of tradeoff exercise parameters and conclusions. Lists the guidelines aimed at yielding designs compatible with projected space applications.
ENVIRONMENTAL

ASSESSMENT STUDIES

FY 1978
PROJECT SUMMARY

Objective

Provides management support to the Director of the SPSPO in planning and analysis functions.

Approach

1. Provide qualified support personnel and locate office in vicinity of the SPSPO, Washington, D.C. to advise and support the SPSPO, in technical and administrative functions.

2. Utilize contractor personnel to perform specific planning and evaluation studies.

3. Utilize contractor and ANL personnel to provide a report and information storage retrieval, and distribution system.

Benefit

1. Provides for continuing project management support in planning and analysis functions, administers fluctuating work loads, and administers specific technical functions.
Objective:

Identify ecological issues for specific selected rectenna sites, evaluate impact of microwave radiation on ecological processes, and identify critical ecological research needs.

Approach:

1. Identify ecological issues associated with the design and concept of microwave reception.
2. Characterize estimated ecological responses.
3. Identify specific rectenna sites and characterize ecological issues associated with each site.
4. Define research requirements and establish priorities.
5. Develop research protocols.

Benefits:

1. Identification of critical research needs, for program implementation, and establishment of a data base for final ecological assessment.
TITLE
Assessment of SPS Rectenna Construction and Operation Impact Upon the Rectenna Site Ecology

ORGANIZATION
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL. 60439

AMOUNT
$40,000

PRINCIPAL INVESTIGATOR
S. Ballou

WORK LOCATION
Argonne, IL.

DURATION-AWARD DATA
8 months- April 1, 1978

CONTRACT NO.
189-ANL49576

PROJECT SUMMARY

Objective:
Evaluate the impact of rectenna construction and operation on ecosystems, and identify critical ecological research needs.

Approach:
1. Identify ecological issues associated with rectenna design and construction alternatives.
2. Characterize estimated ecological responses resulting from rectenna construction and operation.
3. Identify specific rectenna sites.
4. Identify and characterize ecological issues associated with each site.
5. Identify alternative sites for minimizing ecological impacts.
6. Define research requirements and establish priorities.
7. Develop research protocols.

Benefit:
Identification of research needs, implementation of research program, and establishment of a data base required for final assessment.
PROJECT SUMMARY

Objective:
Assess potential inadvertent weather effects resulting from thermal energy and water substance release into the troposphere during single and multiple HLTV launches.

Approach:
1. Obtain estimates of thermal energy and water release during launches from SAI.
2. Estimate potential for inadvertent weather effects using existing cloud modelling techniques and estimates of thermal energy and water release into the troposphere during rocket launches.
3. Compare water vapor flux of rocket cloud formation with the vapor fluxes into various cumuli and cumulonimbus clouds.
4. Perform a trial simulation of cloud formation and the associated precipitation using an existing one-dimension cloud model under specific meteorological conditions.
5. Review existing cloud models and select a candidate most suitable for future studies if warranted.
6. Prepare a preliminary list of issues and qualitatively assess their environmental impacts.

Benefit:
Assesses potential of ground cloud formation and the associated precipitation due to rocket launches. Data generated will provide input to rocket exhaust synergistic effects study.
TITLE
Preliminary Assessment of Effects of Rocket Effluents in Stratosphere

ORGANIZATION
Argonne National Laboratory
9700 South Cass Avenue
Argonne, ILL. 60439

AMOUNT
$40,500

PRINCIPAL INVESTIGATOR
K. Brubaker

WORK LOCATION
Argonne, ILL.

DURATION-AWARD DATA
6 months- April 1, 1978

CONTRACT NO.
189-ANL49576

PROJECT SUMMARY

Objective:
Prepare a preliminary assessment of the effects of rocket propellants emitted into the stratosphere and their probable impacts.

Approach:
1. A review of literature and modeling approaches to predict the effects of pollutant emissions on stratospheric composition was performed.
2. The current state of knowledge regarding effects of rocket effluents in the stratosphere, including Oz (ozone) depletion, changes in high altitude cloud patterns, etc. was prepared.
3. Review currently available observational data on stratospheric composition and assess the effects of pollutant emissions, based on observable data.
4. Organize a workshop to review program and workplan, identify other issues of potential importance, and recommend additional research.
5. Prepare preliminary assessment of the effects of rocket exhaust emissions and their probable impacts, and circulate.

Benefits:
Provides a preliminary assessment of the possible stratospheric effects of rocket exhaust emissions. This information will be utilized in the assessment of public health and welfare impacts, climatic impacts, and will serve as an input to the formulation of guidelines for launch operations. Issues requiring further investigation and new research priorities will be identified.
PROJECT SUMMARY

* RFQ to be released no later than October 30, 1978

Objective:

Assures that the quality of the physical research facilities and operations in a program evaluating the health and safety aspects of microwave power transmission is at the present state-of-the-art.

Approach:

1. Visit the various research laboratories involved in various aspects of the SPS bioeffects research program.

2. Make periodic qualitative and quantitative reviews of the quality control program at each research laboratory.

3. Provide guidance as necessary to each contractor to assure optimum laboratory performance.

Benefit:

Assures the quality of the microwave health and safety research program.
Title
Dependence of Microwave Biological Effects on Field Complexity

Organization
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439

Amount
*TBD

Principal Investigator
S. Halverson

Work Location
*TBD

Duration-Award Data
*TBD

Contract No.
189-ANL49576

Project Summary
*RFQ to be released no later than October 30, 1978

Objective:
Assess the effects of the exposure system on known microwave biological effects.

Approach:
1. Determine thresholds for unipath and multipath irradiation systems for:
 a. microwave-induced febrile convulsions
 b. microwave-altered responses to physically or chemically-induced systems
 c. microwave-induced work stoppage
 d. sensory detection of the microwave field.
2. Experiments may be performed at power densities greater than that produced by the SPS microwave field and at frequencies which produce whole and partial body resonances.
3. Assist in interpreting existing literature.
4. Assist in the definition of exposure parameters for future experiments.

Benefit:
Provides a method for correlating effects obtained at low microwave intensities that use different exposure systems.
PROJECT SUMMARY

*RFQ to be released no later than October 30, 1978

Objective:

Evaluate the effects of the SPS microwave beam on airborne biota, especially birds.

Approach:

1. Perform wind-tunnel experiments on small flying birds, such as passerines and larger birds such as ducks and geese to determine lethal and sublethal responses.

2. Perform navigational experiments with birds such as homing pigeons or migratory birds to determine whether microwaves interfere with navigational abilities.

3. Determine behavioral response of birds exposed to microwaves under a variety of ambient conditions.

Benefit:

Determines whether the added heat load of microwaves will be detrimental to birds flying through the beam under a variety of environmental conditions. Also, determines whether the microwave beam will have any effects on birds' navigation systems. Assesses effects of microwave radiation on bird behavior and determines attraction to or avoidance of the rectenna site.
OBJECTIVE: Determine whether continuous wave 2,450 MHz microwave radiation is teratogenic or embryopathic in mice.

APPROACH:

1. Establish experiment that includes the following:
 a. Expose mice at 5 power densities (0.1, 0, 10 and 30) mW/cm².
 b. Exposure in a uniform + .5 (dB) far-field of a plane wave. Whole body SAR are to be obtained on representative-sized animal.
 c. Animals will be exposed on the dorsal surface in an anechoic chamber, an environmental conditions of 21° to 24°C and 40-60% relative humidity.
 d. Duration of exposure is daily from 1, post breeding through day 18.

BENEFIT:

Determines teratogenic and/or embryopathic effects of microwave radiation on mice.
TITLE
Effects of Microwave Power Transmission on the Nervous System

ORGANIZATION
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60499

AMOUNT
*TBD

PRINCIPAL INVESTIGATOR
S. Halverson

WORK LOCATION
*TBD

DURATION-AWARD DATA
*TBD

CONTRACT NO.
189-ANL49576

PROJECT SUMMARY
*RFQ to be released no later than October 30, 1978

Objective:
Determine the effects of microwave radiation on the nervous system of experimental animals at microwave radiation densities below 10 mW/cm².

Approach:
1. Investigate structural and functional changes in the nervous system associated with microwave radiation (for 2,450 MHz continuous wave radiation having power densities of 0.1 to 25 mW/cm²).
2. Explore time dependence of potential structural and functional changes.

Benefit:
Will determine qualitative and quantitative gross histochemical and electrophysical changes in the nervous systems of animals exposed to SPS-specific radiation.
TITLE
Immunological/Hematological Effects of Microwave Beam Transmission

ORGANIZATION
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60499

AMOUNT
*TBD

WORK LOCATION
*TBD

PRINCIPAL INVESTIGATOR
S. Halverson

DURATION-AWARD DATA
*TBD

CONTRACT NO.
189-ANL49576

PROJECT SUMMARY
*RFQ to be released no later than October 30, 1978

Objective:
Determine whether previous studies of microwave immunological systems effects are reproducible, and if reproducible, whether immunological competence of the animal is impaired.

Approach:
1. Determine the threshold of microwave immunological/hematological system effects by following the procedures of Victor-Jedrzejczak, et al., as well as by using a free-field exposure system.

2. If appropriate, employ infectivity/disease models (i.e., bacteria, virus, tumor) to assess the effect of 2,450 MHz microwave radiation on immunocompetence of exposed animals.

3. Perform an interspecies comparison of microwave effects.

Benefit:
Confirms results of previous immune effects studies and determines whether immunocompetence of animals (mice) is impaired.
Objective:

Identify and evaluate main beam powered densities within a controlled exclusion zone at a rectenna site. Evaluate low level microwave exposure to the general public and ecology outside the controlled area from scatter from the main beam, side lobe radiation and antenna reradiation.

Approach:

1. Validate prior experiments indicating exposures as low as 1mW/cm² have resulted in behavior perturbations in rodents.

2. Evaluate acute and chronic effects of microwaves appropriate to the SPS (2,450 MHz CW) on operant behavior using small laboratory animals that have been acutely or chronically dosed with several classes of widely used drugs.

3. Assess perturbation of stable baseline operant performance during the microwave exposure regimen.

4. Establish degree of persistence of effects after termination of dosing by microwaves and drugs.

Benefit:

Will obtain results of potentially serious consequence of drug-microwaves synergism which would be useful in assessing the health impact of SPS. Will also obtain data on dose-response relationships useful for determining the threshold of drug-radiation interaction.
Project Summary

Objective:
Summarize current state of knowledge, and identify the effects of Rocket Effluents in the upper atmosphere and assess the impacts. Identify information and analytical technique requirements and recommend research priorities.

Approach:
The following tasks are required to achieve the stated objective:

1. Present state-of-knowledge regarding upper atmospheric effects of rocket effluents (ionospheric modifications) is assessed, through a critical review of experimental and theoretical investigations.

2. Evaluate NASA space lab experiments and recommend any additional measurements that would be required.

3. Use LAGOPEDO data to simulate multiple launch effects on the upper atmosphere. Evaluate the need for a more refined model.

4. Organize workshop on possible climatic/weather modification mechanisms and impacts on rocket effluents in atmosphere.

5. Investigate possible effects of ion-engine propellants used for inter-orbit vehicles.

6. Organize in-depth workshop to identify known or predicted effects, characterize existing basis for predicting effects, and determine additional information requirements.

Benefit:
Provides data base and preliminary impact analysis on upper atmosphere. Serves as basis for determination of additional research that may be required.

M. Mendillo of Boston University, Consultant to ANL.
TITLE: Preliminary Identification of Possible Issues and Impacts of Rectenna Operations

ORGANIZATION: Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439

AMOUNT: $38,000

PRINCIPAL INVESTIGATOR: J. Lee/T. Yamada/ H.D. Orville

WORK LOCATION: Argonne, IL.
Rapid City, SD

DURATION-AWARD DATA: 6 months- April 1, 1978

CONTRACT NO.: 189-ANL49576

PROJECT SUMMARY

Objective:

Qualitatively assess the atmospheric effects of rectenna operations and their impacts on climate and weather in order to provide inputs to the analysis of microwave propagation.

Approach:

This project required the following tasks:

1. Perform literature review
2. Planetary boundary layer and convective cloudmodeling will be used to analyze atmospheric effects of rectenna operations.
3. Trial simulation using a 3-D model under specific rectenna configuration and atmospheric conditions will be performed.
4. Investigate the possibility of generating an organized convective flow in the vicinity of the rectenna site and the consequences, using a 2-D modeling approach.
5. Organize a workshop to identify other issues of potential importance, and recommend additional research.
6. Prepare a preliminary assessment of impacts.

Benefits:

Provides a preliminary assessment of the potential atmospheric effects of rectenna operations. This assessment will form the basis for rectenna design and site selection guidelines, and will serve as input to the assessment of public health and welfare impacts, and microwave propagation impacts. Issues requiring further research will be identified.

*H. D. Orville of South Dakota School of Mines and Technology, Consultant to ANL.
<table>
<thead>
<tr>
<th>TITLE</th>
<th>SPS Microwave Radiation Effects on Ionosphere, Magnetosphere, and Local Field Intensity, Program Management Distributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORGANIZATION</td>
<td>Department of Commerce Institute of Telecommunication Sciences Boulder, Colorado 80302</td>
</tr>
<tr>
<td>AMOUNT</td>
<td>$25,000</td>
</tr>
<tr>
<td>PRINCIPAL INVESTIGATOR</td>
<td>C. Rush</td>
</tr>
<tr>
<td>WORK LOCATION</td>
<td>Duration-Award Data</td>
</tr>
<tr>
<td>Boulder, CO.</td>
<td>8 months - 4/1/78</td>
</tr>
<tr>
<td>CONTRACT NO.</td>
<td>Interagency Agreement No. E-(49-26)-1041</td>
</tr>
</tbody>
</table>

PROJECT SUMMARY

Objective:

Provide Program Management and Support for Studies to determine SPS Microwave radiation effects on the magnetosphere and ionosphere and on local field intensities at or near the surface of the earth.

Approach:

1. Review existing study program.
2. Provide detailed statements of work, research proposals, data and contractual documents, as required.
3. Act as liaison between DOE and research subcontractors.
4. Coordinate research program with information required by DOE, EA, SA and CA Program NASA, and NASA Systems Definition Program.

Benefit:

Provides a coordinated effort by qualified specialists on microwave effects on the atmosphere, and provides reports and data set for preliminary Environmental Impact Statement. This information will be used as an input to Societal and Comparative Assessments.
<table>
<thead>
<tr>
<th>TITLE</th>
<th>SPS Electromagnetic Compatibility Assessment, Overview Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORGANIZATION</td>
<td>Department of Commerce</td>
</tr>
<tr>
<td></td>
<td>Institute of Telecommunication Sciences</td>
</tr>
<tr>
<td></td>
<td>Boulder, Colorado 80302</td>
</tr>
<tr>
<td>AMOUNT</td>
<td>$40,000</td>
</tr>
<tr>
<td>PRINCIPAL INVESTIGATOR</td>
<td>C. Rush</td>
</tr>
<tr>
<td></td>
<td>W. F. Utlaut</td>
</tr>
<tr>
<td>WORK LOCATION</td>
<td>Boulder, CO</td>
</tr>
<tr>
<td>DURATION-AWARD DATA</td>
<td>8 months - 4/1/78</td>
</tr>
<tr>
<td>CONTRACT NO.</td>
<td>Interagency Agreement</td>
</tr>
<tr>
<td></td>
<td>No. E-(49-26)-1041</td>
</tr>
</tbody>
</table>

PROJECT SUMMARY

Objective:

Establishes research programs that will result in understanding effects of ionospheric and magnetospheric heating on communications systems.

Approach:

1. Establish overview committee to review and prioritize proposed research.
2. Develops research methodologies for ionospheric/magnetospheric heating and other experiments to identify and assess EMC of the SPS.

Benefit:

Qualified specialists coordinate EMC Research efforts with the DOE Environmental Assessment Program Plan and NASA Systems Definition Program Plan requirements.
PROJECT SUMMARY

Identify and quantify microwave energy storage in habitable structures and vehicles. Quantify increase in local field intensity due to energy storage.

Approach
Utilizing analytical or experimental methods, determines any increases in local field intensities caused by energy storage in habitable structures or vehicles, for peak and average power density values from the SPS microwave beam at the rectenna site.

Benefit
Quantifies microwave energy storage in habitable structures and vehicles. This data will provide useful information to estimate effects on electromagnetically sensitive systems in the rectenna site vicinity, and (2) for the microwave Health and Safety Impact assessment.
PROJECT SUMMARY

Objective

Predict interference effects on electromagnetic systems and devices not intended to receive radio signals.

Approach

1. Identify critical and non-critical equipment that predict potential effects on systems within the rectenna exclusion area;

 predict effects on critical systems outside the rectenna exclusion zone.

Benefit

Provides an assessment of potential range of EMI effects, and identifies systems that could be effected.
TITLE
SPS Radiofrequency Interference (RFI) Effects

ORGANIZATION
Department of Commerce
Institute of Telecommunications Sciences, Boulder, CO

AMOUNT
$84,000

PRINCIPAL INVESTIGATOR
W. Grant

WORK LOCATION
Boulder, CO

DURATION-AWARD DATA
8 mos. - 4.1.78

CONTRACT NO.
Interagency Agreement No. E-(49-26)-1041

PROJECT SUMMARY

Objective
Predicts effects on systems and devices not intended to receive SPS microwave radiofrequency signals.

Approach
1. Identify sensitive systems.
2. Quantify system performance degradation at SPS Radiofrequencies.
3. Estimate the probability of coupling prohibitive amounts of energy to the systems.

Benefit
Assesses the probability and potential of unacceptable radiofrequency interference effects caused by the SPS.
TITLE
SPS Microwave Radiation Interactive Effects on Magnetosphere and Ionosphere

ORGANIZATION
Dept. of Commerce, Institute of Telecommunications Sciences Boulder, CO 80302

AMOUNT
$30,000

WORK LOCATION
Boulder, CO

PRINCIPAL INVESTIGATOR
C. Rush/NOAA

PROJECT SUMMARY

Objective
Characterize the expected effects of SPS Microwave radiation on the EM scattering properties of the magnetosphere and ionosphere.

Approach
1. Obtain data on realistic model from atmospheric impact assessment.

2. Using realistic models of the ionosphere and magnetosphere, predict microwave beam interactive effects.

Benefit
Refines early predictions of SPS microwave beam interactions with the ionosphere and magnetosphere, perturbed by SPS vehicular emissions.
PROJECT SUMMARY

Objective:
Quantify geographic power distribution for entire SPS system.

Approach:
1. Obtain information from NASA SPS Systems Definition on MPTS radiation characteristics for a single SPS system, GEO locations for the total multi-station system and frequency-intensity spectrum.
2. Predict the field strengths expected at and near the surface of the earth from SPS microwave beam emissions.

Benefit:
Provides a determination of peak and average field strengths as a function of RF and geographic location. This information will support Health and Safety and Communication Impact assessments.
PROJECT SUMMARY

Objective:

Expand EPA 2450 MHz animal exposure system facility.

Approach:

Expand facility, including:

1. A 1KW generator with continuous wave, pulsed, and amplitude modulated modes of operation and power level control.

2. A free-field irradiation anechoic chamber with temperature, humidity and light control.

3. Linear and circularly polarized, waveguide exposure cells.

4. Orthogonal field probes.

Benefit:

Increased capacity to study in-vivo exposure to 2,450 MHz radiation.
Project Summary

Objective:

To establish research programs that lead to an understanding of direct and indirect effects of SPS microwave radiation on the public and provide continuing program guidance.

Approach:

The following tasks were required to achieve the stated objective:

1. Establish overview committee and organize meetings to review and prioritize proposed research.
2. Develop research protocols for short-term and long-term microwave research.
3. Characterize directly and indirectly hazardous, and potentially hazardous effects on man.

Benefit:

Qualified specialists will coordinate the Microwave Impact study effort with the Concept Definition Plan and Environmental Impact Assessment.
TITLE
SPS Microwave Impacts on Public Health and Safety Program Coordination and Guidance

ORGANIZATION
Environmental Protection Agency
Environmental Research Center
Research Triangle Park, NC 27711

AMOUNT
FY 78 $25,000

PRINCIPAL INVESTIGATOR
D. Cahill

WORK LOCATION
Research Triangle Park
NC

DURATION-AWARD DATA
8 months - 4/1/78

CONTRACT NO.
EP-78-I-01-3170

PROJECT SUMMARY
Objective:
Coordinate and guide WBS subtask efforts to determine SPS microwave radiation effects.

Approach:
1. Review DOE/ANL work breakdown structure (WBS) for task I.3.
2. Provide detailed statements of work, work breakdown structures, research proposals, data and other contractual documents required by DOE/ANL.
3. Coordinate program plans with needs and goals of DOE/ANL environmental impact assessment and NASA SPS conceptual development plan.

Benefit:
Provide reports and data for preliminary environmental impact assessment.
<table>
<thead>
<tr>
<th>TITLE</th>
<th>SPS Non-Microwave Impacts on Space Worker Health and Safety Program and Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORGANIZATION</td>
<td>Lawrence Berkeley Lab Berkeley, CA</td>
</tr>
<tr>
<td>AMOUNT</td>
<td>$43,000</td>
</tr>
<tr>
<td>PRINCIPAL INVESTIGATOR</td>
<td>M. White</td>
</tr>
<tr>
<td>WORK LOCATION</td>
<td>Berkeley, CA</td>
</tr>
<tr>
<td>DURATION-AWARD DATA</td>
<td>6 months- April 1, 1978</td>
</tr>
<tr>
<td>CONTRACT NO.</td>
<td>ANL No. 31-109-38-4465</td>
</tr>
</tbody>
</table>

PROJECT SUMMARY

Objective:

Coordinate non-microwave study efforts to determine the effects of non-microwave effects on space worker health and safety.

Approach:

1. Review planned DOE studies for non-microwave effects, and coordinate program plans.
2. Provide detailed statement of work, research proposals, contractual documents, and act as liaison between DOE and subcontractors, as required.

Benefit:

Qualified specialists will coordinate the study of non-microwave effects on space workers, and provide a Data base for preliminary impact assessment.
<table>
<thead>
<tr>
<th>TITLE</th>
<th>ORGANIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPS Non-Microwave Impacts on Health and Safety</td>
<td>Lawrence Berkeley Lab Berkeley, CA.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AMOUNT</th>
<th>PRINCIPAL INVESTIGATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>$50,000</td>
<td>M. White</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WORK LOCATION</th>
<th>DURATION-AWARD DATA</th>
<th>CONTRACT NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berkeley, CA.</td>
<td>8 months-April 1, 1978</td>
<td>ANL No. 31-109-38-4465</td>
</tr>
</tbody>
</table>

PROJECT SUMMARY

Objective:

Characterize potential hazards of space environment to space workers and identify potential effects.

Approach:

1. Characterize space environment hazards.
2. Characterize SPS Construction and Operation hazards.
3. Assess worker exposure to hazards.
4. Estimate effects of worker exposure.

Benefit:

Provide data base to be used in the preliminary assessment of non-microwave hazards to space workers.
<table>
<thead>
<tr>
<th>TITLE</th>
<th>Reduction of LAGOPEDO Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORGANIZATION</td>
<td>EG&G and Los Alamos Scientific Laboratory Los Alamos, New Mexico</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AMOUNT</th>
<th>$25,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>WORK LOCATION</td>
<td>Los Alamos, N.M.</td>
</tr>
<tr>
<td>DURATION-AWARD DATA</td>
<td>6 months- April 1, 1978</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTRACT NO.</th>
<th>W7405-ENG-36</th>
</tr>
</thead>
</table>

| PRINCIPAL INVESTIGATOR | J. Zinn and D. Wright |

PROJECT SUMMARY

Objective:

To extract information from the LAGOPEDO experiments relevant to the assessment of upper atmospheric effects of rocket effluents.

Approach:

Reduce and analyze and summarize relevant data from the LAGOPEDO experiments, for SPS assessment.

Benefit:

Provides information regarding the nature and extent of ionospheric holes caused by multiple launch rocket emissions.
PROJECT SUMMARY

Objective:
Assesses the ability of RF ionospheric heating to produce thermal runaway.

Approach:
1. Heat the ionosphere using Arecibo 430 MHz incoherent backscatter radar.
2. Observe changes in electron temperature in a cross-section of heated ionosphere.
3. Establish power density threshold for thermal runaway.

Benefit:
Determines probability of thermal runaway from SPS microwave beam ionospheric heating, and verifies predicted power density threshold. Defines subsequent information to modify guidelines for microwave power density in the ionosphere.
TITLE
Effects of Propellant Emissions in the Upper Atmosphere

ORGANIZATION
Los Alamos Scientific Laboratory
Los Alamos, New Mexico

AMOUNT
$90,000

PRINCIPAL INVESTIGATOR
J. Zinn

WORK LOCATION
Los Alamos, NM

DURATION-AWARD DATA
6 months - 4/78

PROJECT SUMMARY

Objective:
Determine the effects of exhaust from Heavy Lift Launch Vehicles on the ionosphere.

Approach:
Develop and use one-dimensional and two-dimensional computer codes to investigate the chemical effects of rocket exhaust products on the ionosphere.

Benefit:
Evaluates long-range effects of SPS construction activities on the ionosphere and on climate and terrestrial communications.
TITLE
SPS Magnetosphere and Ionosphere Heating Facility

ORGANIZATION
Rice University
Houston, Texas

AMOUNT
$58,000

PRINCIPAL INVESTIGATOR
W.E. Gordon/R. Dyce

WORK LOCATION
Houston, Texas

DURATION-AWARD DATA
8 mos - 4.1.78

CONTRACT NO.
ANL No. 31-109-38-4465

PROJECT SUMMARY

Objective:
Design and determine engineering specifications for an ionosphere heating facility.

Design physical experiments to assess the EMC of SPS.

Approach:
Provide detailed equipment specifications, and experimental program definition for ionosphere and magnetosphere heating tests utilizing the Arecibo, P.R. facility.

Benefit:
1. Provides detailed cost estimates for modification of testing facility.
2. Identifies cooperative test program for Arecibo, P.R. and Plattville, CO facilities.
PROJECT SUMMARY

Objective:

Design and determine engineering specifications for an ionosphere heating facility.

Design physical experiments to assess the EMC of SPS.

Approach:

Provide detailed equipment specifications, and experimental program definition for ionosphere and magnetosphere heating tests utilizing the Arecibo, P.R. facility.

Benefit:

1. Provides detailed cost estimates for modification of testing facility.
2. Identifies cooperative test program for Arecibo, P.R. and Plattville, CO facilities.
PROJECT SUMMARY

Objective
Prepare a preliminary assessment of rocket propellants emitted into the troposphere, and their impacts. Estimate rocket effluents including thermal energy and water release into the troposphere.

Approach
1. Perform a literature review on theoretical launch vehicle tropospheric interaction phenomena including hydrocarbon.

2. Collect, review, and analyze data from past launches of expendable vehicles, and correlate data to the HLLV.

3. Assess possible environmental effects of HLLV system configurations, including chemical and mechanical (acoustic) phenomena.

4. Estimate source Terms to be used in inadvertent weather modification predictions.

5. Examine the feasibility and advisability of using more sophisticated simulation techniques to analyze launch vehicle ground clouds.

6. Organize a workshop on tropospheric environmental effects related to HLLV launch activity.

Benefits
1. Provides a comprehensive overview of probable impacts of rocket propellants released into atmosphere (long and short term), and probable impacts of rocket launches in the troposphere.

2. Provides info needed to assess impacts on public health and welfare, launch site ecology, and inadvertant weather modification.

3. Prioritizes additional information and research requirements.
<table>
<thead>
<tr>
<th>TITLE</th>
<th>ORGANIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study of Biological and Ecological Effects of the SPS MPTS on Behavior of Insects and other Terrestrial Invertebrates</td>
<td>University of California, Davis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AMOUNT</th>
<th>PRINCIPAL INVESTIGATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>$42,000</td>
<td>N. Gary</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WORK LOCATION</th>
<th>DURATION-AWARD DATA</th>
<th>CONTRACT NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Davis, CA</td>
<td>6 months- July 1, 1978</td>
<td>ANL No. 31-109-38-4442</td>
</tr>
</tbody>
</table>

PROJECT SUMMARY

Objective:

Study the biological and ecological effects of the SPS Microwave Power Transmission System (MPTS) radiation on insects and other invertebrates.

Approach:

1. Design experimental facility to accommodate observation hives, incubators, experimental preparation, and anechoic chambers, and experimental controls, in an existing microwave facility.
2. Study survival, longevity, orientation of flight behavior, foraging behavior, and intra-colony behavior of the European honey bee.

Benefits:

Assess and evaluate microwave radiation-- behavioral effects on an economically important faunal species.
TITLE
SPS RFI/EMI Interference

AMOUNT
<table>
<thead>
<tr>
<th>FY 77</th>
<th>$75,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY 78</td>
<td>$38,000</td>
</tr>
</tbody>
</table>

WORK LOCATION
Richland, Washington

DURATION-AWARD DATA
12 months - 8/77

CONTRACT NO.
EY-76-C-06-1830
DE8132-81028

ORGANIZATION
Battelle Memorial Institute
Pacific Northwest Laboratory
Richland, Washington

PRINCIPAL INVESTIGATOR
K. C. Davis

PROJECT SUMMARY

Objective:

Determine terrestrial, airborne, and space-borne communications; navigation; radar; radio astronomy; and other electronic systems affected by SPS.

Approach:

1. List all electronic systems and equipments that might be adversely affected (RFI/EMI) by SPS operations.

2. Assess impact of SPS radiation on these systems.

3. Evaluate devices and procedures for mitigating these impacts.

4. Identify information gaps and plan and initiate research to fill these voids.

Benefit:

An understanding of potential SPS RFI/EMI problems and the equipment and procedures for reducing these problems.
ENVIRONMENTAL ASSESSMENT STUDIES

FY 1977
Project Summary

Objective:

Complete a preliminary Environmental Impact Assessment against criteria, guidelines, and standards that have been promulgated for SPS.

Approach:

1. Develop a file of environmental and socioeconomic data and study results.
2. Complete a preliminary environmental assessment as a function of criteria and guidelines.

Benefit:

1. Environmental assessment information to aid NASA in carrying out their SPS Concept Definition Work.
2. SPS environmental data for Congress, the public, environmentalists, governmental agencies, etc.

Title: SPS Preliminary Environmental Assessment

Organization: Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60799

Amount: $140,000

Principal Investigator: S. Halverson

Work Location: Chicago, IL

Duration-Award Data: 9 months - 9/77

Contract No.: 189-ANL49576
SPS Management Analysis and Control

Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60499

$25,000

T. D. Wolsko

Chicago, IL
9 months - 9/77

PRINCIPAL INVESTIGATOR

189-ANL49576

PROJECT SUMMARY

Objective:

Develop and apply control techniques to enable DOE to analyze the many program variables and their interactions for use in the Management Process.

Approach:

Complete management analysis, venture analysis, and SPS Evaluation Methodology, and produce decision trees for the SPS Concept Evaluation Program.

Benefit:

Control techniques for decision-making and for the development of recommendations.
TITLE
SPS Guidelines and Criteria

ORGANIZATION
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60499

AMOUNT
$50,000

PRINCIPAL INVESTIGATOR
T. D. Wolsko

WORK LOCATION
Chicago, IL

DURATION-AWARD DATA
12 months - 8/77

CONTRACT NO.
189-ANL49576

PROJECT SUMMARY

Objective:
To review and support development of environmental, public health, safety, economic, and socioeconomic guidelines and criteria for SPS Concept Development and Evaluation.

Approach:
1. Review existing environmental and socioeconomic guidelines, criteria and standards.
2. Isolate existing guidelines, criteria and standards that are relevant to the development and evaluation of SPS concepts.
3. Identify areas where guidelines, standards, etc. are needed.
4. Extend guidelines, standards, etc. and develop new ones as required.

Benefit:
Guidelines and criteria to be used during SPS Concept Definition and Evaluation.
<table>
<thead>
<tr>
<th>TITLE</th>
<th>ORGANIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPS Effects of Microwave Radiation</td>
<td>Battelle Memorial Institute Pacific Northwest Laboratory Richland, Washington</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>AMOUNT</td>
<td>PRINCIPAL INVESTIGATOR</td>
</tr>
<tr>
<td>$75,000</td>
<td>R. D. Phillips</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>WORK LOCATION</td>
<td>DURATION-AWARD DATA</td>
</tr>
<tr>
<td>Richland, Washington</td>
<td>12 months - 9/77</td>
</tr>
<tr>
<td></td>
<td>CONTRACT NO.</td>
</tr>
<tr>
<td></td>
<td>EY-76-C-06-1830</td>
</tr>
<tr>
<td></td>
<td>D8132-81028</td>
</tr>
</tbody>
</table>

PROJECT SUMMARY

Objective:

Evaluate effects of SPS microwave radiation on public health, environment, and terrestrial ecology.

Approach:

1. Assess risks involved in exposure to microwave radiation.
2. Identify key areas of uncertainty and gaps in current knowledge.
3. Plan and undertake research to fill these voids and to improve microwave exposure effects predictive capability.
4. Up-to-date predictions as feasible.

Benefit:

Improved microwave effects data base upon which to base SPS concept definition and evaluation decisions.
TITLE
SPS Atmospheric Effect of Microwaves

ORGANIZATION
Los Alamos Scientific Laboratory
Los Alamos, New Mexico

AMOUNT
$75,000

PRINCIPAL INVESTIGATOR
John Zinn

WORK LOCATION
Los Alamos, New Mexico

DURATION-AWARD DATA
12 months - 9/77

PROJECT SUMMARY
Objective:
Determine indirect public health and environmental impacts from microwave beam interactions with atmosphere.

Approach:
1. Determine effects of beam interactions with the ionosphere and magnetosphere.
2. Determine beam climatological effects, and heat "island" effects.
3. Analyze these effects to determine impacts on public health and environment.

Benefit:
Will provide some of the base data needed to develop guidelines defining maximum permissible power levels within the microwave beam.
SOCIETAL ASSESSMENT STUDIES
FY 1978
TITLE
SPS Societal Assessment Program
Coordination and Guidance

ORGANIZATION
PRC Systems Sciences Co.
7600 Old Springhouse Rd.
McLean, VA 22102

AMOUNT
$37,600

PRINCIPAL INVESTIGATOR
C. Bloomquist

WORK LOCATION
Los Angeles, CA

DURATION-AWARD DATA
5 mos. 6.1.78

CONTRACT NO.
EG-77-C-01-4024

PROJECT SUMMARY
Coordinate preparation of white papers and subsequent effects on key issues relating to the impact of the SPS on society.

Approach
1. Review DOE/ANL Work Breakdown Structure (WBS) for the Societal Assessment.
2. Provide detailed statements of work, WBS, research proposals, data and contract documents as required.
3. Provide liaison between DOE/PRC and subcontractors as required by DOE.
4. Coordinate program plans with needs and goals of the DOE Societal Impact assessment and the NASA SPS conceptual development plan.
5. Provide a comprehensive research needs document to serve as the basis for subsequent assessments of the SPS societal impacts.

Benefit
Provide direction, reports, and data for preliminary societal impact assessment.
PROJECT SUMMARY

Objective
Survey and summarize study efforts to date which address SPS use of resources—land, materials, energy and identify current needs.

Approach
1. Assemble and analyze relevant literature including tentative and anticipated results from any studies in progress.
2. Establish a list of questions in the three categories (land, materials, energy) that must be addressed in order to determine the societal impact of the SPS.
3. Determine where unanswered questions exist in each category and suggest an approach to address them.

Benefit
Provides a state of the art response to SPS - resources issues and establishes an approach to further in-depth evaluation of the problem.
PROJECT SUMMARY

Objective
Identify geographic locational criteria for rectenna siting, and make preliminary determination of potential rectenna area sites in support of resource White Paper.

Approach
1. Develop a list of technical siting criteria influencing the location of rectenna sites based on the NASA Systems Definition Effort.

2. Develop a list of locational criteria for rectenna sites based on potential socio-economic and environmental impacts.

3. Combine criteria from efforts 1 and 2 above to form the basis of a spatial analysis of "eligible areas" for rectenna sites.

4. Provide a preliminary map of "eligible areas" for rectenna sites within the U.S. based on the developed eligibility criteria.

Benefit
Preliminary determination of SPS land use requirements and development of a geographic technique to select sites, and a recommended approach to further study of the problem.
PROJECT SUMMARY

Objective:
Identify and characterize the role of the federal government bodies in SPS development and operation.

Approach:

1. Identify all federal government entities within whose purview the SPS would lie and be periodically reviewed.

2. Characterize the roles of these entities.

3. Develop a sequential flow chart of governmental involvement that would indicate information flow and critical paths of governmental decision-making for an SPS development program, should one be implemented.

Benefit:

Preliminary description of governmental involvement in an operational SPS.
<table>
<thead>
<tr>
<th>TITLE</th>
<th>ORGANIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact of a Satellite Power System (SPS) on State and Local Regulations White Paper</td>
<td>Economic Consultants</td>
</tr>
<tr>
<td></td>
<td>10960 Wilshire Boulevard</td>
</tr>
<tr>
<td></td>
<td>Los Angeles, CA 90024</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AMOUNT</th>
<th>PRINCIPAL INVESTIGATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>$8,060</td>
<td>Allan Kotin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WORK LOCATION</th>
<th>DURATION-AWARD DATA</th>
<th>CONTRACT NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Angeles, CA</td>
<td>4 months - 6/1/78</td>
<td>EG-77-C-01-4024</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRC PO# W4080</td>
</tr>
</tbody>
</table>

PROJECT SUMMARY

Objective:

Identifies the types of regulations applying at levels that would be necessary to manage distribution of SPS electrical power.

Approach:

1. Characterize the current regulatory process as it applies to the provision of electrical power.

2. Evaluate utilization of this regulatory to the SPS.

3. Define problem areas and identify a means to resolve them.

Benefits:

Develops a preliminary assessment of the nature and extent of state and local regulations on SPS and establishes a base for further work.
<table>
<thead>
<tr>
<th>TITLE</th>
<th>ORGANIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Agreements White Paper</td>
<td>Stephen Gorove</td>
</tr>
<tr>
<td></td>
<td>University of Mississippi Law Center</td>
</tr>
<tr>
<td></td>
<td>University, Mississippi 38677</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AMOUNT</th>
<th>PRINCIPAL INVESTIGATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>$15,400</td>
<td>Stephen Gorove</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WORK LOCATION</th>
<th>DURATION-AWARD DATA</th>
<th>CONTRACT NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>University, Miss.</td>
<td>4 mos. 6.1.78</td>
<td>EG-77-C-01-4024</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRC PO# W4076</td>
</tr>
</tbody>
</table>

PROJECT SUMMARY

Objective
Assess problems in obtaining agreements in geostationary orbit assignment, microwave frequency allocation, and microwave exposure standards.

Approach

1. Identify the international agreements that must be obtained in the three areas, define the problems to be resolved and potential delays in the process, based on historical precedents.

2. Identify and make a preliminary evaluation of alternative strategies to facilitate obtaining the required international agreements.

3. Identify areas requiring additional study, and provide a recommended approach.

Benefit
Develops a preliminary assessment of international agreements that will be required for an SPS, and establishes a basis for further systematic study.
OBJECTIVE
Assess problems in obtaining agreements on geostationary orbit assignments, microwave frequency allocations and microwave exposure standards.

APPROACH
1. Identify the international agreements that must be in the three areas; define problems to be resolved and potential delays in the process, based on historical precedents.
2. Identify and make a preliminary evaluation of alternative strategies to facilitate obtaining the required international agreements.
3. Identify areas requiring additional study, and provide a recommended approach.

BENEFIT
Develops a preliminary assessment of international agreements that will be required for an SPS, and establishes a basis for further systematic study.
TITLE
Financial Management Scenario White Paper

ORGANIZATION
Science Applications, Inc.
80 Mission Drive
Pleasanton, CA 94566

AMOUNT
$13,792

PRINCIPAL INVESTIGATOR
J. Peter Vajk

WORK LOCATION
Pleasanton, CA

DURATION-AWARD DATA
4 months - 6/1/78

PROJECT SUMMARY
Objective:
Assess the potential feasibility and advantages of alternative SPS financing and management scenarios.

Approach:
1. Identify initial investment and cash flow capital requirements for SPS development and operation.
2. Determine feasible alternative policies and organizations to provide this capital, including private institutions, joint private and government, government-owned institutions, and the potential for international institutions to develop and operate the SPS.
3. Determine feasible alternative management concepts consistent with the alternative financing arrangements and considerations of public acceptance.
4. Characterize the benefits and disadvantages of each alternative and identify preferable concepts under various possible scenarios for the socioeconomic conditions prevailing during the SPS implementation time frame.
5. Identify any additional studies that are required and determine methodologies for accomplishing them.

Benefit:
Develops a preliminary approach to alternative SPS financing and management strategies, and provides a basis for further study.
PROJECT SUMMARY

Objective
Assess the potential feasibility and advantages of alternative SPS financing and management scenarios.

Approach

1. Identify initial investment and cash flow capital requirements for SPS development and operation.
2. Determine feasible alternative policies and organizations to provide this capital, including private institutions joint private and government, government-owned institutions, and the potential for international institutions to develop and operate the SPS.
3. Determine feasible alternative management concepts consistent with the alternative financing arrangements and considerations of public acceptance.
4. Characterize the benefits and disadvantages of each alternative, and identify preferred concepts under various possible scenarios for the socioeconomic conditions prevailing during the SPS implementation time frame.
5. Identify any additional studies that are required and determine methodologies for accomplishing them.

Benefit
Develops a preliminary approach to alternative SPS financing and management strategies, and provides a basis for further study.
PROJECT SUMMARY

Objective:

Identify (International) organizational options for SPS financial development and management.

Approach:

1. Characterize the organizational structures which have been formed for purposes similar to SPS that might serve as a model for SPS organization.

2. Survey expert opinion as to the suitability, costs and effectiveness of such organizational structures.

3. Provide a report including a critical comparison of organizational structures, and an analysis of the political, environmental and economic issues and impacts of such organizational options, including institutional factors such as international law and U.N. Resolutions.

Benefit:

Preliminary survey of SPS international organizational structures that will and will not work.
PROJECT SUMMARY

Objective:

Determine the role, if any, that the SPS has in the U.S. Military posture, both offensively and defensively, with particular attention to SPS vulnerability.

Approach:

1. Investigate SPS potentialities as a weapon or other supportive element of U.S. military preparedness.

2. Determine the potential impact on international relations of SPS tactical weapons capabilities.

3. Investigate the relative vulnerability of SPS to military action, terrorist attack, or sabotage.

4. Identify questions needing further study and develop approaches that can be taken (1) without security clearance and (2) with security clearance.

Benefit:

Develops preliminary description of the potential military interest in SPS and system vulnerability. Identifies an approach to further study required to clarify the issues.
Objective:

Characterize what role the SPS would have, if any, in the U.S. military posture, both offensively and defensively, with particular attention to SPS vulnerability.

Approach:

1. Investigate SPS potentialities as a weapon or other supportive element of U.S. military preparedness.

2. Determine the potential impact on international relations of tactical weapon capability.

3. Investigate the relative vulnerability of SPS to military action, terrorist attack or sabotage.

4. Identify questions needing further study and develop approaches that can be taken (1) without security clearance, and (2) with security clearance.

Benefit:

Develops preliminary description of the potential military interest in SPS, and system vulnerability. Identifies an approach to further study required to clarify the issues.
Project Summary

Objective:
Survey existing demographic work with respect to SPS and assess impacts of SPS energy availability on geographic distribution of industry and population in the U. S. and other countries receiving SPS output. Establish bases for further study.

Approach:
1. Perform literature review and determine the impacts of SPS large energy source on the distribution of industry and population.
2. Evaluate the potential acceptability of these impacts by appropriate interest groups.
3. Identify the approach to additional study.

Benefit:
Develops a preliminary demographic assessment of the SPS and provides an approach to further systematic study of the problems.
PROJECT SUMMARY

Objective:

Establish the relationship and influence of SPS centralized electrical power source would have on society.

Approach:

1. Survey recent SPS and related work.

2. Characterize the trends toward centralization (decentralization), the public reaction to these trends and estimate the anticipated public response to an SPS.

3. Determine areas requiring further study and recommend an approach to accomplishing these studies.

Benefits:

Develops a preliminary assessment of the SPS Centralization issue, characterizes the probable public response, and defines a basis and approach to further systematic study.
Project Summary

Objective:
Develop a preliminary perspective of the public acceptability of the SPS Concept, and the means to monitor it.

Approach:

1. **Identify and characterize primary SPS characteristics that would impact the "quality of life", and establish methodologies for evaluating the public (national and international) balancing of the potential benefits and disadvantages.**

2. **Evaluate initial views of relatively informed public interest (activist) groups, as well as studies by social scientists.**

3. **Identify the specific potential SPS benefits and disadvantages that are likely to be critical to public acceptance.**

4. **Develop a method for determining and influencing public acceptance of the SPS as a function of time. Recommend additional studies which would clarify this issue.**

Benefit:
Develops a preliminary assessment of public acceptance, and defines an approach to further systematic study.
TITLE
Student Involvement in SPS White Paper

ORGANIZATION
Forum for the Advancement of Students in Science & Technology, Inc.
2030 M St. NW, Suite 402
Washington, D. C. 20036

AMOUNT
$9,447

PRINCIPAL INVESTIGATOR
Leonard David

WORK LOCATION
Washington, D. C.

DURATION-AWARD DATA
4 months - 6/1/78

CONTRACT NO.
EG-77-C-01-4024

PROJECT SUMMARY

Objective:
1. Identify a methodology to communicate information to the college community, regarding the concept and implications of SPS.
2. Investigate models and methods of conflict management which can be applied to the dissemination of SPS information.

Approach:
1. Survey existing mechanisms successful in disseminating information to the college community.
2. Consult with communication specialists, student program directors, students active in campus programs as to the effectiveness of various communications methods to disseminate information on the SPS concept.
3. Identify potential use of student networks and direct mail lists.
4. Determine methodologies for incorporating SPS into the educational curriculum.
5. Conduct literature search on conflict management for models which can be applied to the SPS, and identify models that have proven to be successful.

Benefit:
Develops a preliminary determination of models and methodologies of disseminating information on SPS to the college community, and possible conflict management models to reduce polarization of models. Acts as basis for further study.
COMPARATIVE ASSESSMENT

FY 1978
<table>
<thead>
<tr>
<th>TITLE</th>
<th>ORGANIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparative Assessment Methodology</td>
<td>Argonne National Laboratory</td>
</tr>
<tr>
<td></td>
<td>9700 South Cass Avenue</td>
</tr>
<tr>
<td></td>
<td>Argonne, IL 60439</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AMOUNT</th>
<th>PRINCIPAL INVESTIGATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY 78 $75,000</td>
<td>T. Wolsko</td>
</tr>
<tr>
<td>FY 79 $100,000 (Est.)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WORK LOCATION</th>
<th>DURATION-AWARD DATA</th>
<th>CONTRACT NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argonne, IL</td>
<td>18 months 4/1/78</td>
<td>189-ANL 49576</td>
</tr>
</tbody>
</table>

PROJECT SUMMARY

Objective:

Develop comparative methodologies that clarify decision-making regarding SPS and alternative energy generation systems.

Approach:

1. Review and evaluate current and historical comparative methodologies.
2. Identify methods for making comparisons within the framework of the SPS Evaluation program.
3. Develop a direct cost comparison methodology (preliminary methodology).
4. Develop a side-by-side methodology for making nominal comparisons (interim methodology).
5. Develop scenario dependent methodology (alternative futures) for making total social cost comparisons.
6. Identify the comparative impact measurements of key stockholders (interest groups, etc.) through workshops and direct solicitation.
7. Combine stockholders criteria and historical knowledge to develop SPS comparative methodology.

Benefit:

This study will provide methodologies for making comparative assessments that are technically based, and sensitive to the measurement criteria used by stockholders.
PROJECT SUMMARY

Objective
Develop comparative data on critical environmental and social issues.

Approach
1. Perform literature search on critical issue and non-critical issue areas.
2. Develop problem definition papers on critical issues.
3. Conduct colloquium in critical issue areas to gather judgements of the experts.
4. Prepare research papers on critical comparative issues.
5. Integrate critical issue data into the comparative assessments.

Benefit
Develop a data source which will be used to determine comparative assessment of the SPS on critical environmental and social issues.
TITLE
Terrestrial Alternatives

AMOUNT
FY 78 $100,000
FY 79 $100,000 (Est.)
FY 80 $50,000 (Est.)

WORK LOCATION
Argonne, IL/TBD

DURATION-AWARD DATA
22 mos., 4.1.78

CONTRACT NO.
189-ANL-49576

PROJECT SUMMARY

Objective
Develop data on alternative.

Approach
1. Survey existing data that has been gathered by DOE, DOE contractors, and other studies on alternative energy systems.
2. Identify data gaps not covered by previous studies.
3. Develop new data to provide new information, or improve existing information as required.
4. Determine the quality of data and data sources (uncertainty).

Benefit
Develops data on alternative energy systems for input to comparative assessments.
PROJECT SUMMARY

Objective
Provide comparative assessments on the environmental, social, economic, and technical costs, risks, and uncertainties for SPS and alternative energy supply systems.

Approach
1. Develop a direct cost comparison of SPS and alternative energy supply systems.
2. Develop a side-by-side analysis that makes nominal systems comparisons.
3. Develop a scenario dependent analysis that assesses total social cost comparisons based on alternative futures.

Benefit
The Comparative Assessment will provide a comparative perspective on environmental, social, economic, and technical costs, risks and uncertainties for SPS and alternative energy systems. The assessment will enable decision-makers to make an early decision as to the future direction of the SPS project.
TITLE
SPS Utility Integration

ORGANIZATION
Harza Engineering and
Argonne National Laboratory
Chicago, IL
9700 So. Cass Avenue
Argonne, IL 60439

AMOUNT
$60,000

WORK LOCATION
Argonne, IL and
Chicago, IL

DURATION-AWARD DATA
6 mos. 4.1.78

CONTRACT NO.
189-ANL49576
ANL No. 31-109-38-4142

PROJECT SUMMARY

Objective
Determine the problems of SPS integration into utility systems.

Approach
1. Characterize utility systems that might employ the SPS technology.
2. Assess SPS energy integration problems, including system reliability, system stability, reserve margin requirements, system performance, transmission and distribution.
3. Assess SPS maximum market penetration rates, based on system constraints, unit size and other parameters.

Benefit
Develop a perspective of energy system integration problems that would accompany SPS energy technology/interaction.
COMPARATIVE ASSESSMENT

FY 1977
PROJECT SUMMARY

Objective:

Develop a methodology by which the total social cost of SPS may be compared to that of other energy alternatives.

Approach:

1. Develop data base for SPS, fossil, nuclear, and terrestrial solar energy systems.

2. Define a preliminary comparative assessment methodology for use in conducting the SPS Environmental Assessment.

3. Update SPS comparative assessment methodology as appropriate during the evaluation program.

Benefit:

A tool based on the latest available information and current procedures/practices that will allow a detailed and comprehensive assessment of the SPS to alternate systems.
SELECTED REPORTS BIBLIOGRAPHY

107
INDEX OF CONTRACTORS
INDEX OF CONTRACTORS

1. Argonne National Laboratory 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 76, 77, 78, 94, 99, 100, 101, 102, 103, 105

2. Battelle Memorial Institute 74, 79

3. Boeing Aerospace Company 30, 31, 32, 33, 34, 35, 36, 37

4. Boston University 53

5. Center for Policy Process 95

6. Carl Q. Christol 88

7. ECON 27

8. Economic Consultants, Inc. 83, 86

9. EG&G 67

10. Environmental Protection Agency (EPA) 62, 63, 64

11. Environmental Resource Group 96

12. Forum for the Advancement of Students in Science and Technology (FASST) 97

13. Institute of Telecommunications Sciences (ITS) 55, 56, 57, 58, 59, 60, 61, 71

14. International Technical Services, Inc. 85, 91

15. Herbert Kierulff 90

16. Lawrence Berkeley Laboratory (LBL) 65, 66

17. LinCom Corporation 38

18. Los Alamos Scientific Laboratory (LASL) 67, 68, 69

19. Michael Ozeroff 93

20. Planning Research Corporation 25, 82, 92

21. RCA/David Sarnoff Research Center 39

22. Rice University 70, 84

109
23. Rockwell International 24
24. Science Applications, Inc. 72, 89
25. South Dakota School of Mines and Technology 54
26. University of California, Davis 73
27. University of Mississippi 87
28. University of Tennessee 29
29. Vought Corporation 26